Letters in Mathematical Physics

, Volume 94, Issue 1, pp 77–86 | Cite as

An Efficient Method for the Solution of Schwinger–Dyson Equations for Propagators



Efficient computation methods are devised for the perturbative solution of Schwinger–Dyson equations for propagators. I show how a simple computation allows to obtain the dominant contribution in the sum of many parts of previous computations. This allows for an easy study of the asymptotic behavior of the perturbative series. In the cases of the four-dimensional supersymmetric Wess–Zumino model and the \({\phi_6^3}\) complex scalar field, the singularities of the Borel transform for both positive and negative values of the parameter are obtained and compared.

Mathematics Subject Classification (2000)

81T15 81T17 


Renormalization Schwinger–Dyson equation Borel summation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellon M., Schaposnik F.: Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras. Nucl. Phys. B 800, 517–526 (2008) arXiv:arXiv:0801.0727v2 [hep-th]CrossRefMathSciNetADSMATHGoogle Scholar
  2. 2.
    Bellon M.P.: Approximate differential equations for renormalization group functions in models free of vertex divergencies. Nucl. Phys. B 826 [PM], 522–531 (2010). doi: 10.1016/j.nuclphysb.2009.11.002 arXiv:0907.2296CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Bellon, M.P.: Higher loop corrections to Schwinger–Dyson equations (in preparation) (2010)Google Scholar
  4. 4.
    Broadhurst D.J., Kreimer D.: Exact solutions of Dyson–Schwinger equations for iterated one-loop integrals and propagator-coupling duality. Nucl. Phys. B 600, 403–422 (2001) arXiv:hep-th/0012146CrossRefADSMATHGoogle Scholar
  5. 5.
    Kreimer D., Yeats K.: An etude in non-linear Dyson–Schwinger equations. Nucl. Phys. Proc. Suppl. 160, 116–121 (2006). doi: 10.1016/j.nuclphysbps.2006.09.036 arXiv:hep-th/0605096CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.UPMC Univ Paris 06, UMR 7589, LPTHEParisFrance
  2. 2.CNRS, UMR 7589, LPTHEParisFrance

Personalised recommendations