Advertisement

Letters in Mathematical Physics

, Volume 93, Issue 3, pp 295–305 | Cite as

Bubble Divergences from Cellular Cohomology

  • Valentin Bonzom
  • Matteo Smerlak
Article

Abstract

We consider a class of lattice topological field theories, among which are the weak-coupling limit of 2d Yang–Mills theory, the Ponzano–Regge model of 3d quantum gravity and discrete BF theory, whose dynamical variables are flat discrete connections with compact structure group on a cell 2-complex. In these models, it is known that the path integral measure is ill-defined in general, because of a phenomenon called ‘bubble divergences’. A common expectation is that the degree of these divergences is given by the number of ‘bubbles’ of the 2-complex. In this note, we show that this expectation, although not realistic in general, is met in some special cases: when the 2-complex is simply connected, or when the structure group is Abelian – in both cases, the divergence degree is given by the second Betti number of the 2-complex.

Mathematics Subject Classification (2000)

81T45 (primary) 57M20 81T25 83C45 (secondary) 

Keywords

powercounting topological gauge theory bubble divergence spinfoam models. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baez J.C.: An introduction to spin foam models of quantum gravity and BF theory. Lect. Notes Phys. 543, 25 (2000) arXiv:gr-qc/9905087CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Perez A.: Spin foam models for quantum gravity. Class. Quant. Grav. 20, R43 (2003) arxiv:gr-qc/0301113MATHCrossRefADSGoogle Scholar
  3. 3.
    Freidel L., Krasnov K.: Spin foam models and the classical action principle. Adv. Theor. Math. Phys. 2, 1183–1247 (1999) arXiv:hep-th/9807092MathSciNetGoogle Scholar
  4. 4.
    Engle J., Pereira R., Rovelli C.: Flipped spinfoam vertex and loop gravity. Nucl. Phys. B 798, 251 (2008) arXiv:0708.1236 [gr-qc]MATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Freidel L., Krasnov K.: A new spin foam model for 4d gravity. Class. Quant. Grav. 25, 125018 (2008) arXiv:0708.1595 [gr-qc]CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Freidel L.: Group field theory: an overview. Int. J. Theor. Phys. 44, 1769–1783 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Oriti, D.: The group field theory approach to quantum gravity. In: Oriti, D. (ed.) Ap proaches to Quantum Gravity, Cambridge University Press, Cambridge (2009). arXiv:gr-qc/0607032Google Scholar
  8. 8.
    Perez A., Rovelli C.: A spinfoam model without bubble divergences. Nucl. Phys. B 599, 255–282 (2001) arxiv:gr-qc/0006107MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Freidel L., Gurau R., Oriti D.: Group field theory renormalization—the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009)CrossRefADSGoogle Scholar
  10. 10.
    Ben Geloun, J., Krajewski, T., Magnen, J., Rivasseau, V.: Linearized group field theory and power counting theorems. arXiv:1002.3592 [hep-th]Google Scholar
  11. 11.
    Bonzom, V., Smerlak, M.: Bubble divergences from twisted cohomology (to appear)Google Scholar
  12. 12.
    Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Bloch F. (ed.) Spectroscopic and group theoretical methods in physics. North-Holland (1968)Google Scholar
  13. 13.
    Freidel L., Louapre D.: Diffeomorphisms and spin foam models. Nucl. Phys. B 662, 279–298 (2003) arxiv:gr-qc/0212001MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Barrett J.W., Naish-Guzman I.: The Ponzano-Regge model. Class. Quant. Grav. 26, 155014 (2009) arXiv:0803.3319 [gr-qc]CrossRefADSGoogle Scholar
  15. 15.
    Ooguri H.: Topological lattice models in four dimensions. Mod. Phys. Lett. A 7, 2799–2810 (1992) arXiv:hep-th/9205090MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Gurau, R.: Colored group field theory. arXiv:0907.2582 [hep-th]Google Scholar
  17. 17.
    Goldman W.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54, 200 (1984)MATHCrossRefGoogle Scholar
  18. 18.
    Karshon Y.: An algebraic proof for the symplectic structure of moduli space. Proc. Amer. Math. Soc. 116, 591–605 (1992)MATHMathSciNetGoogle Scholar
  19. 19.
    Witten E.: On quantum gauge theories in two dimensions. Commun. Math. Phys. 141, 153–209 (1991)MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Forman R.: Small volume limits of 2-d Yang–Mills. Commun. Math. Phys. 151, 39–52 (1993)MATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Blau M., Thompson G.: Topological gauge theories of antisymmetric tensor fields. Ann. Phys. 205, 130–172 (1991)MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Horowitz G.: Exacly soluble diffeomorphism invariant theories. Comm. Math. Phys. 125, 417 (1989)MATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Gegenberg J., Kunstatter G.: The partition function for topological field theories. Ann. Phys. 231, 270–289 (1994) arxiv:hep-th/9304016MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Centre de Physique ThéoriqueMarseille Cedex 09France

Personalised recommendations