Skip to main content
Log in

A Two-Dimensional Analogue of the Luttinger Model

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a fermion model that is, as we suggest, a natural 2D analogue of the Luttinger model. We derive this model as a partial continuum limit of a 2D spinless lattice fermion system with local interactions and away from half filling. In this derivation, we use certain approximations that we motivate by physical arguments. We also present mathematical results that allow an exact treatment of parts of the degrees of freedom of this model by bosonization, and we propose to treat the remaining degrees of freedom by mean field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Luttinger J.M.: An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  2. Mattis D.C., Lieb E.H.: Exact solution of a many-fermion system and its associated boson field. J. Math. Phys. 6, 304 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  3. Tomonaga S.: Remarks on Bloch’s method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  4. Thirring W.: A soluble relativistic field theory. Ann. Phys. 3, 91 (1958)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Johnson K.: Solution of the equations for the Green functions of a two dimensional relativistic field theory. Nuovo Cim. 20, 773 (1961)

    Article  Google Scholar 

  6. Heidenreich R., Seiler R., Uhlenbrock D.A.: The Luttinger model. J. Stat. Phys. 22, 27 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  7. Haldane, F.D.M.: “Luttinger liquid theory” of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C 14, 2585 (1981)

    Google Scholar 

  8. Gogolin A.O., Nersesyan A.A., Tsvelik A.M.: Bosonization and strongly correlated systems. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  9. Carey, A.L., Ruijsenaars, S.N.M.: On fermion gauge groups, current algebras and Kac-Moody algebras. Acta Appl. Mat. 10, 1 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. von Delft J., Schoeller H.: Bosonization for beginners - refermionization for experts. Ann. Phys. (Leipzig) 7, 225 (1998)

    Article  MATH  ADS  Google Scholar 

  11. Luther A.: Tomonaga fermions and the Dirac equation in three dimensions. Phys. Rev. B 19, 320 (1979)

    Article  ADS  Google Scholar 

  12. Mattis D.C.: Implications of infrared instability in a two-dimensional electron gas. Phys. Rev. B 36, 745 (1987)

    Article  ADS  Google Scholar 

  13. Khveshchenko D.V., Hlubina R., Rice T.M.: Non-Fermi-liquid behavior in two dimensions due to long-ranged current-current interactions. Phys. Rev. B 48, 10766 (1993)

    Article  ADS  Google Scholar 

  14. Hlubina R.: Luttinger liquid in a solvable two-dimensional model. Phys. Rev. B 50, 8252 (1994)

    Article  ADS  Google Scholar 

  15. Anderson P.W.: “Luttinger-liquid” behavior of the normal metallic state of the 2D Hubbard model. Phys. Rev. Lett. 64, 1839 (1990)

    Article  ADS  Google Scholar 

  16. Luther A.: Interacting electrons on a square Fermi surface. Phys. Rev. B 50, 11446 (1994)

    Article  ADS  Google Scholar 

  17. Houghton, A., Kwon, H.-J., Marston, J.B.: Multidimensional bosonization, Adv. Phys. 49, 141 (2000) [cond-mat/9810388]

    Google Scholar 

  18. Polychronakos A.P.: Bosonization in higher dimensions via noncommutative field theory. Phys. Rev. Lett. 96, 186401 (2006)

    Article  ADS  Google Scholar 

  19. Langmann, E.: A 2D Luttinger model, arXiv:0903.0055v3 [math-ph]

  20. de Woul, J., Langmann, E.: Partially gapped fermions in 2D. J. Stat. Phys. (to appear) arXiv:0907.1277v2 [math-ph]

  21. de Woul, J., Langmann, E.: (work in progress)

  22. Shankar R.: Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  23. Damescelli, A., Hussain, Z., Shen, Z.-X.: Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  24. Furukawa N., Rice T.M., Salmhofer M.: Truncation of a two-dimensional Fermi surface due to quasiparticle gap formation at the saddle points. Phys. Rev. Lett. 81, 3195 (1998)

    Article  ADS  Google Scholar 

  25. Honerkamp C., Salmhofer M., Furukawa N., Rice T.M.: Breakdown of the Landau-Fermi liquid in two dimensions due to umklapp scattering. Phys. Rev. B 63, 035109 (2001)

    Article  ADS  Google Scholar 

  26. Schulz H.J.: Fermi-surface instabilities of a generalized two-dimensional Hubbard model. Phys. Rev. 39, 2940 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  27. Langmann E., Wallin M.: Mean field magnetic phase diagrams for the two dimensional tt′–U Hubbard model. J. Stat. Phys. 127, 825 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Grosse H., Langmann E., Raschhofer E.: On the Luttinger–Schwinger model. Ann. Phys. (N.Y.) 253, 310 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Mastropietro V.: Luttinger liquid fixed point for a two-dimensional flat Fermi surface. Phys. Rev. B 77, 195106 (2008)

    Article  ADS  Google Scholar 

  30. Zheleznyak A.T., Yakovenko V.M., Dzyaloshinskii I.E.: Parquet solution for a flat Fermi surface. Phys. Rev. B 55, 3200 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Langmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langmann, E. A Two-Dimensional Analogue of the Luttinger Model. Lett Math Phys 92, 109–124 (2010). https://doi.org/10.1007/s11005-010-0388-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-010-0388-2

Mathematics Subject Classification (2000)

Keywords

Navigation