Letters in Mathematical Physics

, Volume 92, Issue 1, pp 1–16 | Cite as

Quantum Quasi-Shuffle Algebras



We establish some properties of quantum quasi-shuffle algebras. They include the necessary and sufficient condition for the construction of the quantum quasi-shuffle product, the universal property, and the commutativity condition. As an application, we use the quantum quasi-shuffle product to construct a linear basis of T(V), for a special kind of Yang–Baxter algebras (V, m, σ).

Mathematics Subject Classification (2010)

16T25 17B37 


quantum quasi-shuffle algebra connected twisted Yang–Baxter bialgebra Lyndon word 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradley D.M.: Multiple q-zeta values. J. Algebra 283, 752–798 (2005)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ebrahimi-Fard K., Guo L.: Mixable shuffles, quasi-shuffles and Hopf algebras. J. Algebraic Combin. 24, 83–101 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hashimoto M., Hayashi T.: Quantum multilinear algebra. Tôhoku Math. J. 44(2), 471–521 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hoffman M.E.: The algebra of multiple harmonic series. J. Algebra 194, 477–495 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hoffman M.E.: Quasi-shuffle products. J. Algebraic Combin. 11, 49–68 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jian, R.-Q., Rosso, M.: Quantum B -algebras I: constructions of YB algebras and YB coalgebras, http://arxiv.org/abs/0904.2964v2
  7. 7.
    Kassel, C., Turaev, V.: Braid groups. With the graphical assistance of Olivier Dodane. Graduate Texts in Mathematics, vol. 247. Springer, New York (2008)Google Scholar
  8. 8.
    Loday J.L.: On the algebra of quasi-shuffles. Manuscripta Math. 123, 79–93 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Loday J.L., Ronco M.: On the structure of cofree Hopf algebras. J. Reine Angew. Math. 592, 123–155 (2006)MATHMathSciNetGoogle Scholar
  10. 10.
    Lothaire M.: Combinatorics on Words. With a Foreword by Roger Lyndon and a Preface by Dominique Perrin. Cambridge University Press, Cambridge (1997)Google Scholar
  11. 11.
    Newman K., Radford D.E.: The cofree irreducible Hopf algebra on an algebra. Am. J. Math. 101, 1025–1045 (1979)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nichols W.: Bialgebras of type one. Commun. Algebra 15, 1521–1552 (1978)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Quillen D.: Rational homotopy theory. Ann. Math. 90(2), 205–295 (1969)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Rosso M.: Quantum groups and quantum shuffles. Invent. Math. 133, 399–416 (1998)MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.School of Computer ScienceDongguan University of TechnologyDongguanPeople’s Republic of China
  2. 2.Institut de Mathématiques de JussieuUniversité Paris Diderot (Paris 7)ParisFrance
  3. 3.Department of MathematicsSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  4. 4.Department of MathematicsEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations