The Mean Field Theory of Spin Glasses: The Heuristic Replica Approach and Recent Rigorous Results

  • Giorgio Parisi


The mathematically correct computation of the spin glasses free energy in the infinite range limit crowns 25 years of mathematic efforts in solving this model. The exact solution of the model was found many years ago by using a heuristic approach; the results coming from the heuristic approach were crucial in deriving the mathematical results. The mathematical tools used in the rigorous approach are quite different from those of the heuristic approach. In this note we will review the heuristic approach to spin glasses in the light of the rigorous results; we will also discuss some conjectures that may be useful to derive the solution of the model in an alternative way.

Mathematics Subject Classification (2000)

11E95 46N30 60F10 82B44 


p-adic theory applications in probability theory and statistics large deviations disordered systems (random Ising models, random Schrödinger operators, etc.) 


  1. 1.
    Mézard M., Parisi G., Virasoro M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)MATHGoogle Scholar
  2. 2.
    Parisi, G.: Les Houches Summer School—Session LXXVII. In: Barrat, J.-L., Feigelman, M.V. Kurchan, J., Dalibard, J. (eds.) Slow Relaxation and Non Equilibrium Dynamics in Condensed Matter. Elsevier, Amsterdam (2003)Google Scholar
  3. 3.
    Castellani, T., Cavagna, A.: Spin Glasses for Pedestrian. cond-mat/0505032Google Scholar
  4. 4.
    Parisi G.: Les Houches Summer School—Session LXXXV. In: Bouchaud, P., Mézard, M., Dalibard, J. (eds) Complex Systems, Elsevier, Amsterdam (2007)Google Scholar
  5. 5.
    Parisi G.: Field Theory, Disorder and Simulations. World Scientific, Singapore (1992)MATHGoogle Scholar
  6. 6.
    Kondor I.: Parisi’s mean-field solution for spin glasses as an analytic continuation in the replica number. J. Phys. A 16, L127 (1983)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Parisi, G., Rizzo, T.: Universality and Deviations in Disordered Systems. cond-mat 0901.1100 (2009)Google Scholar
  8. 8.
    Dotsenko V., Franz S., Mézard M.: Partial annealing and overfrustration in disordered systems. J. Phys. A 27, 2351 (1994)MATHCrossRefADSGoogle Scholar
  9. 9.
    Talagrand M.: Large deviations, Guerras and ASS schemes, and the Parisi hypothesis. J. Stat. Phys. 126, 837 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Parisi G., Rizzo T.: Large deviations in the free energy of mean-field spin glasses. Phys. Rev. Lett. 101, 117205 (2008)CrossRefADSGoogle Scholar
  11. 11.
    Tracy C.A., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151 (1994)MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Tracy C.A., Widom H.: On orthogonal and symplectic matrix ensembles.. Commun. Math. Phys. 177, 727 (1996)MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Dean D.S., Majumdar S.N.: Large deviations of extreme eigenvalues of random matrices. Phys. Rev. Lett. 97, 160201 (2006)CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Dean D.S., Majumdar S.N.: Extreme value statistics of eigenvalues of Gaussian random matrices. Phys. Rev. E 77, 041108 (2008)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Pastur L., Shcherbina M.: The absence of self-averaging of the order parameter in the Sherrington-Kirkpatrick model. J. Stat. Phys. 62, 1 (1992)CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Kastler D., Robinson D.W.: Invariant states in statistical mechanics. Commun. Math. Phys. 3, 151 (1966)MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Ruelle D.: Statistical Mechanics. Benjamin, Reading (1969)MATHGoogle Scholar
  19. 19.
    Parisi G.: Facing complexity. Phys. Scr. 35, 123 (1987)CrossRefADSGoogle Scholar
  20. 20.
    Marinari E., Parisi G., Ricci-Tersenghi F., Ruiz-Lorenzo J., Zuliani F.: Replica symmetry breaking in short-range spin glasses: theoretical foundations and numerical evidences. J. Stat. Phys. 98, 973 (2000)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Aizenman M., Sims R., Starr S.L.: Extended variational principle for the Sherrington–Kirkpatrick spin-glass model. Phys. Rev. B 68, 214403 (2003)CrossRefADSGoogle Scholar
  22. 22.
    Guerra F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1 (2002)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Talagrand M.: The Parisi formula. Ann. Math. 163, 221 (2006)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Iniguez D., Parisi G., Ruiz-Lorenzo J.J.: Simulation of three-dimensional Ising spin glass model using three replicas: study of Binder cumulants. J. Phys. A 29, 4337 (1996)MATHCrossRefADSGoogle Scholar
  25. 25.
    Guerra F.: About the overlap distribution in mean field spin-glass model. Int. J. Phys. B 10, 1675 (1997)CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Ghirlanda S., Guerra F.: General properties of overlap probability distributions in disordered spin systems. Toward Parisi ultrametricity. J. Phys. A Math. Gen. 31, 9149 (1998)MATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Aizenman, M., Contucci, P.: On the stability of the quenched state in mean field spin glass models. cond-mat 9712129Google Scholar
  28. 28.
    Parisi, G.: On the probabilistic formulation of the replica approach to spin glasses. cond-mat/9801081Google Scholar
  29. 29.
    Ruelle D.: A mathematical reformulation of Derridas REM and GREM. Commun. Math. Phys. 48, 351 (1988)MathSciNetGoogle Scholar
  30. 30.
    Bouchaud J.P., Dean D.S.: Aging on Parisi’s tree. J. Phys. I France 5, 265 (1995)CrossRefGoogle Scholar
  31. 31.
    Fyodorov Y.V., Bouchaud J.-P.: Statistical mechanics of a single particle in a multiscale random potential: Parisi landscapes in finite dimensional Euclidean spaces. J. Phys. A 41, 324009 (2008)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Parisi G., Sourlas N.: P-adic numbers and replica symmetry breaking. Eur. Phys. J. B 14, 535 (2000)CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Khrennikova A.Yu., Kozyrev S.V.: Replica symmetry breaking related to a general ultrametric space II: RSB solutions and the n → 0 limit. Physica A 359, 241 (2006)CrossRefADSGoogle Scholar
  34. 34.
    Campellone, M., Parisi, G., Virasoro, M.: Replica method and finite volume corrections (2009, in preparation)Google Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Dipartimento di Fisica, Sezione INFN, SMC of INFM-CNRUniversità di Roma “La Sapienza”RomeItaly

Personalised recommendations