Letters in Mathematical Physics

, Volume 87, Issue 3, pp 267–281 | Cite as

On the Hochschild Homology of Elliptic Sklyanin Algebras



In this paper, we compute the Hochschild homology of elliptic Sklyanin algebras. These algebras are deformations of polynomial algebra with a Poisson bracket called the Sklyanin Poisson bracket.

Mathematics Subject Classification (2000)

16E40 17B63 


Hochschild homology quantum space deformation Poisson homology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artin M., Schelter W.F.: Graded algebras of global dimension 3. Adv. Math. 66(2), 171–216 (1987)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y.: Traces on the Sklyanin algebra and correlation functions of the eight-vertex model. J. Phys. A 38(35), 7629–7659 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Briançon J.: Maynadier-Gervais, Hélène Sur le nombre de Milnor d’une singularité semi-quasi-homogéne. C. R. Math. Acad. Sci. Paris 334(4), 317–320 (2002)MATHMathSciNetGoogle Scholar
  4. 4.
    Brylinski J.-L.: A differential complex for Poisson manifolds. J. Diff. Geom. 28(1), 93–114 (1988)MATHMathSciNetGoogle Scholar
  5. 5.
    Drinfel’d V.G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang–Baxter equations. Dokl. Akad. Nauk SSSR 268(2), 285–287 (1983)MathSciNetGoogle Scholar
  6. 6.
    Dufour J.-P., Zung N.T.: Poisson structures and their normal forms. Progress in Mathematics, vol. 242. Birkhäuser Verlag, Basel (2005)Google Scholar
  7. 7.
    Eisenbud D.: Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)Google Scholar
  8. 8.
    Fresse B.: Théorie des opérades de Koszul et homologie des algébres de Poisson. Ann. Math. Blaise Pascal 13(2), 237–312 (2006)MATHMathSciNetGoogle Scholar
  9. 9.
    Ginzburg V.L.: Grothendieck groups of Poisson vector bundles. J. Symplectic Geom. 1(1), 121–169 (2001)MATHMathSciNetGoogle Scholar
  10. 10.
    Ginzburg, V.L., Lu, J.-H.: Poisson cohomology of Morita-equivalent Poisson manifolds. Internat. Math. Res. Notices (10), 199–205 (1992)Google Scholar
  11. 11.
    Ginzburg V.L.: Weinstein, Alan Lie–Poisson structure on some Poisson Lie groups. J. Am. Math. Soc. 5(2), 445–453 (1992)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Guichardet A.: Homologie de Hochschild des déformations quadratiques d’algèbres de polynômes. Commun. Algebra Commun. Algebra 26(12), 4309–4330 (1998)MATHMathSciNetGoogle Scholar
  13. 13.
    Khimshiashvili G.: On one class of exact Poisson structures. Proc. A. Razmadze Math. Inst. 119, 111–120 (1999)MATHMathSciNetGoogle Scholar
  14. 14.
    Khimshiashvili G.: On one class of affine Poisson structures. Bull. GA Acad. Sci. 161(3), 395–397 (2000)MATHMathSciNetGoogle Scholar
  15. 15.
    Khimshiashvili G., Przybysz R.: On generalized Sklyanin algebras. GA Math. J. 7(4), 689–700 (2000)MATHMathSciNetGoogle Scholar
  16. 16.
    Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Levasseur T., Smith S.P.: Modules over the 4-dimensional Sklyanin algebra. Bull. Soc. Math. France 121, 35–90 (1993)MATHMathSciNetGoogle Scholar
  18. 18.
    Lichnerowicz, A.: André Les variétés de Poisson et leurs algébres de Lie associées. (French) J. Diff. Geometry 12(2), 253–300 (1977)MATHMathSciNetGoogle Scholar
  19. 19.
    Marconnet N.: Homologies of cubic Artin-Schelter regular algebras. J. Algebra 278(2), 638–665 (2004)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Monnier P.: Poisson cohomology in dimension two. Israel J. Math. 129, 189–207 (2002)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Odesskiĭ, A.V., Feĭgin, B.L.: Sklyanin’s elliptic algebras. (Russian) Funktsional. Anal. i Prilozhen. 23(3), 45–54 (1989), 96 [translation in Funct. Anal. Appl. 23(3), 207–214 (1989)]Google Scholar
  22. 22.
    Odesskiĭ A.V., Rubtsov V.N.: Polynomial Poisson algebras with a regular structure of symplectic leaves (Russian). Teoret Mat. Fiz. 133(1), 3–23 (2002)MathSciNetGoogle Scholar
  23. 23.
    Pichereau A.: Poisson (co)homology and isolated singularities. J. Algebra 299(2), 747–777 (2006)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Saito K.: On a generalization of de-Rham lemma. Ann. Inst. Fourier (Grenoble) 26(2), vii, 165–170 (1976)Google Scholar
  25. 25.
    Shoikhet B.: A proof of the Tsygan formality conjecture for chains. Adv. Math. 179(1), 7–37 (2003)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sklyanin E.K.: Some algebraic structures connected with the Yang–Baxter equation (Russian). Funktsional Anal. Prilozhen. 16(4), 27–34, 96 (1982)MathSciNetGoogle Scholar
  27. 27.
    Sklyanin E.K.: Some algebraic structures connected with the Yang–Baxter equation. Representations of a quantum algebra (Russian). Funktsional. Anal. Prilozhen. 17(4), 34–48 (1983)MathSciNetGoogle Scholar
  28. 28.
    Smith S.P., Stafford J.T.: Regularity of the four-dimensional Sklyanin algebra. Compos. Math. 83(3), 259–289 (1992)MATHMathSciNetGoogle Scholar
  29. 29.
    Staniszkis J.M.: The 4-dimensional Sklyanin algebra. J. Algebra 167(1), 104–115 (1994)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Tagne Pelap, S.R.: Poisson (co)homology of polynomial Poisson algebras in dimension four: Sklyanin’s case. LAREMA (2008, preprint)Google Scholar
  31. 31.
    Tsygan B.(1999). Formality conjectures for chains, differential topology, infinite-dimensional Lie algebras, and applications. Am. Math. Soc. Trans. Ser. 2, 194, 261–274 [Am. Math. Soc. Providence, RI (1999)]Google Scholar
  32. 32.
    Van den Bergh, M.: Noncommutative homology of some three-dimensional quantum spaces. In: Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp, 1992). K-Theory 8(3), 213–230 (1994)Google Scholar
  33. 33.
    Vanhaecke, P.: Integrable systems in the realm of algebraic geometry, 2nd edn. Lecture Notes in Mathematics, vol. 1638. Springer, Berlin (2001)Google Scholar
  34. 34.
    Weibel, C.A.: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, vol. 38Google Scholar
  35. 35.
    Xu P.: Poisson cohomology of regular Poisson manifolds. Ann. Inst. Fourier (Grenoble) 42(4), 967–988 (1992)MATHMathSciNetGoogle Scholar
  36. 36.
    Xu P.: Gerstenhaber algebras and BV-algebras in Poisson geometry. Commun. Math. Phys. 200(3), 545–560 (1999)MATHCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Laboratoire Angevin de Recherche en Mathématiques, Département de MathématiquesUniversité D’AngersAngers Cedex 01France.

Personalised recommendations