Advertisement

Letters in Mathematical Physics

, Volume 86, Issue 2–3, pp 159–175 | Cite as

Cohomology of \({\mathcal {K}(2)}\) Acting on Linear Differential Operators on the Superspace \({\mathbb{R}^{1|2}}\)

  • Nizar Ben Fraj
Article

Abstract

We compute the first differential cohomology of the Lie superalgebra \({\mathcal{K}(2)}\) of contact vector fields on the (1, 2)-dimensional real superspace with coefficients in the superspace of linear differential operators between the superspaces of weighted densities—a superisation of a result by Feigin and Fuchs. We give explicit expressions of 1-cocycles generating these spaces.

Mathematics Subject Classification (2000)

53D55 

Keywords

cohomology superalgebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrebaoui B., Ben Fraj N.: On the cohomology of the Lie Superalgebra of contact vector fields on S 1|1. Bell. Soc. R. Sci. Liège 72(6), 365–375 (2004)MathSciNetGoogle Scholar
  2. 2.
    Basdouri, I., Ben Ammar, M., Ben Fraj, N., Boujelbene, M., Kammoun, K.: Cohomology of the Lie superalgebra of contact vector fields on \({\mathbb{R}^{1|1}}\) and deformations of the superspace of symbols. J. Nonlinear Math. Phys. (2008, to appear)Google Scholar
  3. 3.
    Conley, C.H.: Conformal symbols and the action of contact vector fields over the superline. arXiv:0712.1780v2[math.RT]Google Scholar
  4. 4.
    Duval, C., Michel, J.P.: On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative. arXiv:0710.1544v3 [math-ph]Google Scholar
  5. 5.
    Feigin B.L., Fuchs D.B.: Homology of the Lie algebras of vector fields on the line. Funct. Anal. Appl. 14, 201–212 (1980)CrossRefGoogle Scholar
  6. 6.
    Fuchs D.B.: Cohomology of Infinite-Dimensional Lie Algebras. Plenum, New York (1986)Google Scholar
  7. 7.
    Gargoubi H., Mellouli N., Ovsienko V.: Differential operators on supercircle: conformally equivariant quantization and symbol calculus. Lett. Math. Phys. 79, 5165 (2007)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Grozman, P., Leites, D., Shchepochkina, I.: Invariant differential operators on supermanifolds and standard models. In: Olshanetski, M., Vainstein, A. (eds.) Multiple Facets Quantization and Supersymmetry, pp. 508–555. World Scientific, Singapore (2002). arXiv:math.RT/0202193Google Scholar
  9. 9.
    Leites, D.: Lie superalgebras. In: Modern Problems of Mathematics. Recent Developements, vol. 25, pp. 3–49. VINITI, Moscow (1984, in Russian) [English translation in: JOSMAR v. 30(6), 2481–2512 (1985)]Google Scholar
  10. 10.
    Leites, D., Kochetkov, Yu., Weintrob, A.: New invariant differential operators on supermanifolds and pseudo-(co)homology. In: Lecture Notes in Pure and Applied Mathematics, vol. 134, pp. 217–238. Dekker, New York (1991)Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Institut Supérieur de Sciences Appliquées et TechnologieSousseTunisia

Personalised recommendations