Letters in Mathematical Physics

, Volume 85, Issue 2–3, pp 173–183 | Cite as

A New Approach to the \({\ast}\) -Genvalue Equation

Article

Abstract

We show that the eigenvalues and eigenfunctions of the star-genvalue equation can be completely expressed in terms of the corresponding eigenvalue problem for the quantum Hamiltonian. Our methods make use of a Weyl-type representation of the star-product and of the properties of the cross-Wigner transform, which appears as an intertwining operator.

Mathematics Subject Classification (2000)

47G30 81S10 

Keywords

Moyal product star-genvalue equation Wigner transform Weyl operator. 

References

  1. 1.
    Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.: Deformation theory and quantization. I. Deformation of symplectic structures. Ann. Phys. 111, 6–110 (1978)Google Scholar
  2. 2.
    Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.: Deformation theory and quantization. II Physical applications. Ann. Phys. 110, 111–151 (1978)ADSMathSciNetGoogle Scholar
  3. 3.
    de Gosson M.: Symplectically covariant Schrödinger equation in phase space. J. Phys. A Math. Gen. 38, 9263–9287 (2005)MATHCrossRefADSGoogle Scholar
  4. 4.
    de Gosson M., Luef F.: Quantum states and Hardy’s formulation of the uncertainty principle: a symplectic approach. Lett. Math. Phys. 80, 69–82 (2007)MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Gröchenig K., Zimmermann G.: Hardy’s theorem and the short-time Fourier transform of Schwartz functions. J. Lond. Math. Soc. 2(63), 205–214 (2001)CrossRefGoogle Scholar
  6. 6.
    Groenewold H.J.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Torres-Vega G., Frederick J.H.: A quantum mechanical representation in phase space. J. Chem. Phys. 98(4), 3103–3120 (1993)CrossRefADSGoogle Scholar
  8. 8.
    Williamson J.: On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58, 141–163 (1936)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Wong M.W.: Weyl Transforms. Springer, Heidelberg (1998)MATHGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Fakultät für Mathematik, NuHAGUniversität WienViennaAustria

Personalised recommendations