Advertisement

Letters in Mathematical Physics

, Volume 81, Issue 3, pp 211–226 | Cite as

Paths for \({\mathcal{Z}}_k\) Parafermionic Models

  • Patrick Jacob
  • Pierre Mathieu
Article

Abstract

We present a simple bijection between restricted Bressoud lattice paths and paths in regime II of the Andrews–Baxter–Forrester restricted solid–on–solid model. Both types of paths describe states in \({\mathcal{Z}}_k\) parafermionic irreducible modules. The bijection implies a direct correspondence between a RSOS path and a parafermionic state in a quasi-particle basis.

Mathematics Subject Classifications (2000)

81T40 82B23 82B20 11P21 05A17 05A19 

Keywords

lattice paths RSOS models parafermions quasi-particles fermionic characters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, G.E.: The Theory of Partitions. Cambridge University Press, (1984)Google Scholar
  2. 2.
    Andrews G.E., Baxter R.J. and Forrester P.J. (1984). Eight-vertex SOS model and generalized Rogers–Ramanujan-type identities. J. Stat. Phys. 35: 193–266 MATHCrossRefGoogle Scholar
  3. 3.
    Belavin A., Polyakov A. and Zamolodchikov A. (1984). Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241: 333–380 MATHCrossRefADSGoogle Scholar
  4. 4.
    Berkovich A. and McCoy B.M. (1996). Continued fractions and fermionic representations for characters of M(p, p′) minimal models. Lett. Math. Phys. 37: 49–66 MATHCrossRefGoogle Scholar
  5. 5.
    Berkovich A. and Paule P. (2002). Lattice paths, q-multinomials and two variants of the Andrews-Gordon identities. Ramanujan J. 5: 409–425 CrossRefGoogle Scholar
  6. 6.
    Bressoud, D.: Lattice paths and Rogers–Ramanujan identities. In: Alladi, K. (ed.) Number Theory, Madras 1987, Lecture Notes in Math. vol. 1395, pp. 140–172 (1987)Google Scholar
  7. 7.
    Burge W.H. (1982). A correspondence between partitions related to generalizations of the Ramanujan–Rogers identities. Eur. J. Comb. 3: 195–213 MATHGoogle Scholar
  8. 8.
    Date E., Jimbo M., Kuniba A., Miwa T. and Okado M. (1987). Exactly solvable SOS models: local height probabilities and theta function identities. Nucl. Phys. B 290: 231–273 MATHCrossRefADSGoogle Scholar
  9. 9.
    Date E., Jimbo M., Miwa T. and Okado M. (1989). Solvable lattice models. Proc. Symp. Pure Math. 49(Part 1): 295–331 Google Scholar
  10. 10.
    Di Francesco P., Mathieu P. and Sénéchal D. (1997). Conformal Field Theory. Graduate Texts in Contemporary Physics. Springer, New York MATHGoogle Scholar
  11. 11.
    Foda O. and Welsh T. (1999). Melzer’s identities revisited. Contemp. Math. 248: 207–234 Google Scholar
  12. 12.
    Georgiev, G.: Combinatorial constructions of modules for infinite-dimensional Lie algebras, II. Parafermionic space. arXiv: q-alg/9504024Google Scholar
  13. 13.
    Huse D.A. (1984). Exact exponents for infinitely many new multicritical points. Phys. Rev. B 30: 3908–3915 CrossRefADSGoogle Scholar
  14. 14.
    Jacob P. and Mathieu P. (2000). Parafermionic character formulae. Nucl. Phys. B 587: 514–542 MATHCrossRefADSGoogle Scholar
  15. 15.
    Jacob P. and Mathieu P. (2002). Parafermionic quasi-particle basis and fermionic-type characters. Nucl. Phys. B 620: 351–379 MATHCrossRefADSGoogle Scholar
  16. 16.
    Jacob P. and Mathieu P. (2005). Parafermionic derivation of the Andrews-type multiple sums. J. Phys. A: Math. Gen. 38: 8225–8238 MATHCrossRefADSGoogle Scholar
  17. 17.
    Jacob, P., Mathieu, P.: Multiple partitions, lattice paths and a Burge-Bressoud-type correspondence. arXiv: math.CO/060900Google Scholar
  18. 18.
    Lepowsky, J., Primc, M.: Structure of the standard modules for the affine Lie algebra \(A_1^{(1)}\) . Contemp. Math. 46. American Mathematical Society Providence (1985)Google Scholar
  19. 19.
    Warnaar S.O. (1996). Fermionic solution of the Andrews–Baxter–Forrester model. I. Unification of CTM and TBA methods. J. Stat. Phys. 82: 657–685 MATHCrossRefGoogle Scholar
  20. 20.
    Warnaar S.O. (1996). Fermionic solution of the Andrews–Baxter–Forrester model, II, Proof of Melzer’s polynomial identities. J. Stat. Phys. 84: 49–83 MATHCrossRefGoogle Scholar
  21. 21.
    Zamolodchikov A. and Fateev V. (1985). Nonlocal (Parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in Z N-symmetrical statistical systems. Sov. Phys. JETP 62: 215–225 Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of DurhamDurhamUK
  2. 2.Département de physique, de génie physique et d’optiqueUniversité LavalQuébecCanada

Personalised recommendations