Letters in Mathematical Physics

, Volume 80, Issue 2, pp 101–113 | Cite as

Return to Thermal Equilibrium

  • Dominique Fellah


We study a class of quantum dynamical semigroups on \(\fancyscript{B}({\mathfrak{H}})\) with Lindbladian generators. We give new conditions in order to easily verify that a quantum dynamical system returns to thermal equilibrium. In the classical picture of the interacting -System+Reservoir-, our result can physically be interpreted as follows : the transition may be sufficient so that each eigenvalue energy state of the system communicates with another.


Equilibrium state quantum dynamical system KMS-condition 

Mathematics Subject Classification (2000)

81V15 47D03 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bratteli O., Robinson D.W. (1987). Operator Algebras and Quantum Statistical Mechanics, TMP, 2nd edn. vol.1. Springer, HeidelbergGoogle Scholar
  2. 2.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. TMP, 2nd edn. vol.II, Springer, 1996Google Scholar
  3. 3.
    Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Processus d’interaction entre photons et atomes. EDP-Sciences, CNRS Editions, 2nd edn, 1996Google Scholar
  4. 4.
    Davies E.B. (1974). Markovian Master Equations. Commun. Math. Phys. 39: 91–110 MATHCrossRefADSGoogle Scholar
  5. 5.
    Dereziński, J., Jakšic̀, V.: Fermi Golden Rule and Open Quantum Systems. Summer school of Grenoble. Open Quantum Systems (2003)Google Scholar
  6. 6.
    Fagnola, F., Rebolledo, R.: Quantum markov semigroups and their stationary states. Summer School of Grenoble, Open quantum systems (2003)Google Scholar
  7. 7.
    Fellah, D.: Systèmes dynamiques quantiques ouverts. Thèse, Université de Toulon et du Var (2004)Google Scholar
  8. 8.
    Frigerio A. (1978). Stationary states of quantum dynamical semigroups. Commun. Math. Phys. 63: 269–276 MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Frigerio A. (1977). Quantum dynamical semigroups and approach to equilibrium. Lett. Math. Phys. 2: 79–87 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Haag R. (1996). Local Quantum Physics, TMP, 2nd edn. Springer, Heidelberg Google Scholar
  11. 11.
    Lebowitz L., Spohn H. (1978). Irreversible thermodynamics for quantum systems weakly coupled to thermals reservoirs. Adv. Chem. Phys. 38: 109–142 CrossRefGoogle Scholar
  12. 12.
    Lindblad G. (1976). On the Generators of Quantum Dynamical Semigroups. Commun. Math. Phys. 48: 119–130 MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Pillet, C.-A.: Quantum dynamical systems and their KMS-states, Summer school of Grenoble. Open Quantum Systems (2003)Google Scholar
  14. 14.
    Spohn H. (1977). An algedraic condition for the approach to equilibrium of an open N-level system. Lett. Math. Phys. 2: 33–38 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Spohn H. (1976). Approach to equilibrium for completely positive dynamical semigroups of N-level systems. Rep. Math. Phys. 10: 189–194CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Saint-JulienFrance

Personalised recommendations