Letters in Mathematical Physics

, Volume 80, Issue 1, pp 69–82 | Cite as

Quantum States and Hardy’s Formulation of the Uncertainty Principle: a Symplectic Approach

  • Maurice de GossonEmail author
  • Franz Luef


We express the condition for a phase space Gaussian to be the Wigner distribution of a mixed quantum state in terms of the symplectic capacity of the associated Wigner ellipsoid. Our results are motivated by Hardy’s formulation of the uncertainty principle for a function and its Fourier transform. As a consequence we are able to state a more general form of Hardy’s theorem.

Mathematics Subject Classification (2000)

81S10 81S30 37J05 


Hardy’s uncertainty principle Wigner distribution density operator positivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonami A., Demange B. and Jaming P. (2003). Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transform. Rev. Mat. Iberoamericana 19(1): 23–55 zbMATHMathSciNetGoogle Scholar
  2. 2.
    Fefferman C. and Phong D.H. (1981). The uncertainty principle and sharp Gårding inequalities. Comm. Pure Appl. Math. 75: 285–331 MathSciNetGoogle Scholar
  3. 3.
    Bayen F., Flato M., Fronsdal C., Lichnerowicz A. and Sternheimer D. (1978). Deformation theory and quantization. I. Deformation of symplectic structures. Ann. Phys. 111:    6–110 Google Scholar
  4. 4.
    Bayen F., Flato M., Fronsdal C., Lichnerowicz A. and Sternheimer D. (1978). Deformation theory and quantization. II Physical Applications. Ann. Phys. 110: 111–151 ADSMathSciNetGoogle Scholar
  5. 5.
    Folland G.B. (1989). Harmonic Analysis in Phase space. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ Google Scholar
  6. 6.
    de Gosson M. (2005). Cellules quantiques symplectiques et fonctions de Husimi–Wigner. Bull. Sci. Math. 129: 211–226 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    de Gosson M. (2005). On the Weyl representation of metaplectic operators. Lett. Math. Phys. 72: 129–142 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    de Gosson, M.: Uncertainty principle, phase space ellipsoids and Weyl calculus. Operator Theory: Advances and Applications, vol. 164, pp. 121–132. Birkhäuser, Basel (2006)Google Scholar
  9. 9.
    de Gosson, M.: Symplectic geometry and quantum mechanics. Operator Theory: Advances and Application (subseries: “Advances in Partial Differential Equations”), vol. 166. Birkhäuser, Basel (2006)Google Scholar
  10. 10.
    Gromov M. (1985). Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82: 307–347 zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Hardy G.H. (1933). A theorem concerning Fourier transforms. J. Lond. Math. Soc. 8: 227–231 zbMATHCrossRefGoogle Scholar
  12. 12.
    Gröchenig K. and Zimmermann G. (2001). Hardy’s theorem and the short-time Fourier transform of Schwartz functions. J. Lond. Math. Soc. (2) 63: 205–214 zbMATHCrossRefGoogle Scholar
  13. 13.
    Hofer H. and Zehnder E. (1994). Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, Boston zbMATHGoogle Scholar
  14. 14.
    Leray J. (1981). Lagrangian Analysis and Quantum Mechanics, a mathematical structure related to asymptotic expansions and the Maslov index. MIT Press, Cambridge zbMATHGoogle Scholar
  15. 15.
    Littlejohn R.G. (1986). The semiclassical evolution of wave packets. Phys. Rep. 138(4–5): 193–291 CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Messiah, A.: Mécanique Quantique vol. 1. Dunod, Paris, (1995) [English translaton: Quantum Mechanics, North–Holland (1991)]Google Scholar
  17. 17.
    Narcowich F.J. and O’Connell R.F. (1986). Necessary and sufficient conditions for a phase-space function to be a Wigner distribution. Phys. Rev. A 34(1): 1–6 CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Narcowich, F.J.: Geometry and uncertainty. J. Math. Phys. 31(2), (1990)Google Scholar
  19. 19.
    Polterovich L. (2001). The Geometry of the Group of Symplectic Diffeomorphisms. Lectures in Mathematics. Birkhäuser, Boston Google Scholar
  20. 20.
    Radha R. and Thangavelu S. (2004). Hardy’s inequalities for Hermite and Laguerre expansions. Proc. Am. Math. Soc. 132(12): 3525–3536 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Simon R., Sudarshan E.C.G. and Mukunda N. (1987). Gaussian–Wigner distributions in quantum mechanics and optics. Phys. Rev. A 36(8): 3868–3880 CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Simon R., Mukunda N. and Dutta B. (1994). Quantum Noise Matrix for Multimode Systems: U(n)-invariance, squeezing and normal forms. Phys. Rev. A 49: 1567–1583 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Williamson J. (1936). On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58: 141–163 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations