Letters in Mathematical Physics

, Volume 80, Issue 2, pp 127–138 | Cite as

The Extended Cartan Homotopy Formula and a Subspace Separation Method for Chern–Simons Theory

  • Fernando Izaurieta
  • Eduardo Rodríguez
  • Patricio Salgado


In the context of Chern–Simons (CS) Theory, a subspace separation method for the Lagrangian is proposed. The method is based on the iterative use of the Extended Cartan Homotopy Formula, and allows one to (1) separate the action in bulk and boundary contributions, and (2) systematically split the Lagrangian in appropriate reflection of the subspace structure of the gauge algebra. In order to apply the method, one must regard CS forms as a particular case of more general objects known as transgression forms. Five-dimensional CS Supergravity is used as an example to illustrate the method.

Mathematics Subject Classification (2000)

57R20 70S15 81T60 


Chern–simons theories field theories in higher dimensions supersymmetric gauge theories 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chamseddine A.H. (1990). Topological gravity and supergravity in various dimensions. Nucl. Phys. B 346: 213 CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bañados, M., Troncoso, R., Zanelli, J.: Higher dimensional chern–simons supergravity. Phys. Rev. D 54, 2605 (1996). arXiv: gr-qc/9601003Google Scholar
  3. 3.
    Troncoso, R., Zanelli, J.: New gauge supergravity in seven and eleven dimensions. Phys. Rev. D 58, 101703 (1998) arXiv: hep-th/9710180Google Scholar
  4. 4.
    Hořava, P.: M theory as a holographic field theory. Phys. Rev. D 59, 046004 (1999). arXiv: hep-th/9712130Google Scholar
  5. 5.
    Troncoso, R., Zanelli, J.: Gauge supergravities for all odd dimensions. Int. J. Theor. Phys. 38, 1181 (1999). arXiv: hep-th/9807029Google Scholar
  6. 6.
    Nastase, H.: Towards a Chern–Simons M theory of OSp(1|32) ×  OSp(1|32). arXiv: hep-th/0306269Google Scholar
  7. 7.
    Izaurieta, F., Rodríguez, E., Salgado, P.: Eleven-dimensional gauge theory for the M algebra as an abelian semigroup expansion of \({\mathfrak{osp}(32|1)}\) . Preprint GACG/05/2006. arXiv: hep-th/0606225Google Scholar
  8. 8.
    Mañes J., Stora R. and Zumino B. (1985). Algebraic study of chiral anomalies. Commun. Math. Phys. 102: 157 MATHCrossRefADSGoogle Scholar
  9. 9.
    de Azcárraga, J.A., Izquierdo, J.M.: Lie Groups, Lie algebras, cohomology and some applications in physics. Cambridge Univ. Press, Cambridge (1995)Google Scholar
  10. 10.
    Nakahara, M.: Geometry, Topology and Physics 2nd edn. Institute of Physics Publishing, Philadelphia (2003)Google Scholar
  11. 11.
    Borowiec, A., Ferraris, M., Francaviglia, M.: A covariant formalism for Chern– Simons gravity. J. Phys. A 36, 2589 (2003) arXiv: hep-th/0301146Google Scholar
  12. 12.
    Mora, P., Olea, R., Troncoso, R., Zanelli, J.: Finite action principle for Chern– Simons AdS gravity. JHEP 0406, 036 (2004) arXiv: hep-th/0405267Google Scholar
  13. 13.
    Fatibene, L., Ferraris, M., Francaviglia, M.: Augmented variational principles and relative conservation laws in classical field theory. Int. J. Geom. Methods Mod. Phys. 2, 373 (2005) arXiv: math-ph/0411029Google Scholar
  14. 14.
    Fatibene L., Francaviglia M. and Mercadante S. (2005). Covariant formulation of Chern–Simons theory. Int. J. Geom. Methods Mod. Phys. 2: 993 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Borowiec, A., Fatibene, L., Ferraris, M., Francaviglia, M.: Covariant Lagrangian formulation of Chern–Simons and BF theories. Int. J. Geom. Meth. Mod. Phys. 3, 755 (2006) arXiv: hep-th/0511060Google Scholar
  16. 16.
    Izaurieta, F., Rodríguez, E., Salgado, P.: On transgression forms and Chern–Simons (super)gravity. Preprint LMU-ASC-77-05. arXiv: hep-th/0512014Google Scholar
  17. 17.
    Mora, P.: Transgression forms as unifying principle in field theory. Ph.D. Thesis, Universidad de la República, Uruguay (2003). arXiv: hep-th/0512255Google Scholar
  18. 18.
    Mora, P., Olea, R., Troncoso, R., Zanelli, J.: Transgression forms and extensions of Chern–Simons gauge theories. JHEP 0602, 067 (2006) arXiv: hep-th/0601081Google Scholar
  19. 19.
    Mora, P.: Unified approach to the regularization of odd dimensional AdS gravity. arXiv: hep-th/0603095Google Scholar
  20. 20.
    de Azcárraga, J.A., Macfarlane, A.J., Mountain, A.J., Pérez, J.C.: Invariant tensors for simple groups. Nucl. Phys. B 510, 657 (1998) arXiv: physics/9706006Google Scholar
  21. 21.
    Izaurieta, F., Rodríguez, E., Salgado, P.: Expanding Lie (Super)Algebras through Abelian Semigroups. J. Math Phys. 47, 123512 (2006) arXiv: hep-th/0606215Google Scholar
  22. 22.
    Lovelock D. (1971). The Einstein Tensor and its Generalizations. J. Math. Phys. 12: 498 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Fernando Izaurieta
    • 1
    • 2
    • 3
  • Eduardo Rodríguez
    • 1
    • 2
    • 3
  • Patricio Salgado
    • 2
    • 3
  1. 1.Arnold Sommerfeld Center for Theoretical PhysicsLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Departament de Física TeòricaUniversitat de ValènciaBurjassotSpain
  3. 3.Departamento de FísicaUniversidad de ConcepciónConcepciónChile

Personalised recommendations