Advertisement

Letters in Mathematical Physics

, Volume 80, Issue 1, pp 37–56 | Cite as

Gravity and the Noncommutative Residue for Manifolds with Boundary

  • Yong Wang
Article

Abstract

We prove a Kastler–Kalau–Walze type theorem for the Dirac operator and the signature operator for 3,4-dimensional manifolds with boundary. As a corollary, we give two kinds of operator-theoretic explanations of the gravitational action in the case of 4-dimensional manifolds with flat boundary.

Mathematics Subject Classification (2000)

58G20 53A30 46L87 

Keywords

noncommutative residue for manifolds with boundary gravitational action for manifolds with boundary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann T. (1996). A note on the Wodzicki residue. J. Geom. Phys. 20: 404–406 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barth N.H. (1985). The fourth-order gravitational action for manifolds with boundaries. Class. Quant. Grav. 2: 497–513 MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Berline N., Getzler E., Vergne M. (1992). Heat Kernals and Dirac Operators. Springer, Berlin Google Scholar
  4. 4.
    Connes, A.: Quantized calculus and applications. In: XIth International Congress of Mathematical Physics (Paris, 1994), pp. 15–36. Internat Press, Cambridge (1995)Google Scholar
  5. 5.
    Connes A. (1998). The action functional in noncommutative geometry. Commun. Math. Phys. 117: 673–683 CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Fedosov B.V., Golse F., Leichtnam E., Schrohe E. (1996). The noncommutative residue for manifolds with boundary. J. Funct. Anal. 142: 1–31 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Figueroa H., Gracia-Bondía J., Várilly J. (2001). Elements of noncommutative geometry. Birkhäuser, Boston MATHGoogle Scholar
  8. 8.
    Grubb G., Schrohe E. (2001). Trace expansions and the noncommutative residue for manifolds with boundary. J. Reine Angew. Math. 536: 167–207 MATHMathSciNetGoogle Scholar
  9. 9.
    Guillemin V.W. (1985). A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues. Adv. Math. 55(2): 131–160 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hawking, S.W.: In: Hawking, S.W., Israel, W. (eds.) General Relativity. An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)Google Scholar
  11. 11.
    Kastler D. (1995). The Dirac operator and gravitiation. Commun. Math. Phys. 166: 633–643 MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Kalau W., Walze M. (1995). Gravity, non-commutative geometry and the Wodzicki residue. J. Geom. Phys. 16: 327–344 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rempel S., Schulze B.W. (1982). Index theory of elliptic boundary problems. Akademieverlag, Berlin MATHGoogle Scholar
  14. 14.
    Schrohe E. (1999). Noncommutative residue, Dixmier’s trace and heat trace expansions on manifolds with boundary. Contemp. Math. 242: 161–186 MathSciNetGoogle Scholar
  15. 15.
    Ugalde, W.J.: Differential forms and the Wodzicki residue. arXiv: Math, DG/0211361Google Scholar
  16. 16.
    Wang Y. (2006). Differential forms and the Wodzicki residue for manifolds with boundary. J. Geom. Phys. 56: 731–753 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wang Y. (2006). Differential forms and the noncommutative residue for manifolds with boundary in the non-product Case. Lett. math. Phys. 77: 41–51 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Wodzicki M. (1984). Local invariants of spectral asymmetry. Invent. Math. 75(1): 143–178 MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Yu, Y.: The Index Theorem and The Heat Equation Method. Nankai Tracts in Mathematics, vol. 2. World Scientific, Singapore (2001)Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsNortheast Normal UniversityChangchunChina
  2. 2.Center of Mathematical SciencesZhejiang UniversityHangzhouChina

Personalised recommendations