Skip to main content
Log in

A Class of Calogero Type Reductions of Free Motion on a Simple Lie Group

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The reductions of the free geodesic motion on a non-compact simple Lie group G based on the G + × G + symmetry given by left- and right-multiplications for a maximal compact subgroup \({G_{+} \subset G}\) are investigated. At generic values of the momentum map this leads to (new) spin Calogero type models. At some special values the ‘spin’ degrees of freedom are absent and we obtain the standard BC n Sutherland model with three independent coupling constants from SU(n + 1,n) and from SU(n,n). This generalization of the Olshanetsky-Perelomov derivation of the BC n model with two independent coupling constants from the geodesics on G/G + with G = SU(n + 1,n) relies on fixing the right-handed momentum to a non-zero character of G +. The reductions considered permit further generalizations and work at the quantized level, too, for non-compact as well as for compact G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Calogero F. (1971). Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12: 419–436

    Article  MathSciNet  Google Scholar 

  2. Olshanetsky M.A., Perelomov A.M. (1981). Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rept. 71: 313–400

    Article  ADS  MathSciNet  Google Scholar 

  3. Olshanetsky M.A., Perelomov A.M. (1983). Quantum integrable systems related to Lie algebras. Phys. Rept. 94: 313–404

    Article  ADS  MathSciNet  Google Scholar 

  4. Perelomov, A.M.: Integrable Systems of Classical Mechanics and Lie Algebras. Birkhäuser (1990)

  5. Heckman G. (1994). Hypergeometric and spherical functions. In: Heckman, G., Schlichtkrull, H. (eds) Harmonic Analysis and Special Functions on Symmetric Spaces Perspectives in Mathematics, vol 16, pp 1–89. Academic, NewYork

    Google Scholar 

  6. Nekrasov, N.: Infinite-dimensional algebras, many-body systems and gauge theories. In: Morozov, A.Yu., Olshanetsky, M.A. (eds.) Moscow Seminar in Mathematical Physics. AMS Transl. Ser. 2, pp. 263–299. American Mathematics Social (1999)

  7. D’Hoker E., Phong D.H. (1999). Seiberg–Witten theory and Calogero–Moser systems. Prog. Theor. Phys. Suppl. 135: 75–93 hep-th/9906027

    ADS  MathSciNet  Google Scholar 

  8. van Diejen J.F., Vinet L. (eds.) (2000) Calogero–Moser–Sutherland Models. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  9. Sutherland B. (2004). Beautiful Models. World Scientific, Singapore

    MATH  Google Scholar 

  10. Finkel F., Gómez-Ullate D., González-López A., Rodríguez M.A., Zhdanov R. (2004). A survey of quasi-exactly solvable systems and spin Calogero-Sutherland models. In: Tempesta, P. (eds) Superintegrability in Classical and Quantum Systems, pp 173–186. American Mathematical Society, New York

    Google Scholar 

  11. Etingof, P.: Lectures on Calogero–Moser systems. math.QA/0606233

  12. Polychronakos A.P. (2006). Physics and mathematics of Calogero particles. J. Phys. A Math. Gen. 39: 12793–12845 hep-th/0607033

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Aniceto I., Jevicki A. (2006). Notes on collective field theory of matrix and spin Calogero models. J. Phys. A Math. Gen. 39: 12765–12791 hep-th/0607152

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Olshanetsky M.A., Perelomov A.M. (1976). Completely integrable Hamiltonian systems connected with semisimple Lie algebras. Invent. Math. 37: 93–108

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Olshanetsky M.A., Perelomov A.M. (1976). Explicit solutions of some completely integrable systems. Lett. Nuovo Cim. 17: 97–101

    MathSciNet  Google Scholar 

  16. Inozemtsev V.I., Meshcheryakov D.V. (1985). Extension of the class of integrable dynamical systems connected with semisimple Lie algebras. Lett. Math. Phys. 9: 13–18

    Article  MATH  MathSciNet  Google Scholar 

  17. Opdam E.M. (1988). Root systems and hypergeometric functions IV. Comp. Math. 67: 191–209

    MATH  MathSciNet  Google Scholar 

  18. Oshima T., Sekiguchi H. (1995). Commuting families of differential operators invariant under the action of a Weyl group. J. Math. Sci. Univ. Tokyo 2: 1–75

    MATH  MathSciNet  Google Scholar 

  19. Bordner A.J., Sasaki R., Takasaki K. (1999). Calogero–Moser models II: symmetries and foldings. Prog. Theor. Phys. 101: 487–518 hep-th/9809068

    Article  ADS  MathSciNet  Google Scholar 

  20. Fehér L., Pusztai B.G. (2006). Spin Calogero models associated with Riemannian symmetric spaces of negative curvature. Nucl. Phys. B 751: 436–458 math-ph/0604073

    Article  ADS  Google Scholar 

  21. Oblomkov A. (2004). Heckman–Opdam’s Jacobi polynomials for the BC n root system and generalized spherical functions. Adv. Math. 186: 153–180 math.RT/0202076

    Article  MATH  MathSciNet  Google Scholar 

  22. Helgason S. (1978). Differential Geometry. Lie Groups and Symmetric Spaces. Academic, New York

    MATH  Google Scholar 

  23. Knapp A.W. (2002). Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140. Birkhäuser, Boston

    Google Scholar 

  24. Ortega J.-P., Ratiu T.S. (2004). Momentum Maps and Hamiltonian Reduction Progress. in Mathematics vol. 222. Birkhäuser, Boston

    Google Scholar 

  25. Hochgerner, S.: Singular cotangent bundle reduction and spin Calogero–Moser systems. math.SG/0411068

  26. Kazhdan D., Kostant B., Sternberg S. (1978). Hamiltonian group actions and dynamical systems of Calogero type. Commun. Pure Appl. Math. XXXI: 481–507

    MathSciNet  Google Scholar 

  27. Avan J., Babelon O., Talon M. (1994). Construction of the classical R-matrices for the Toda and Calogero models. Alg. Anal. 6: 67–89 hep-th/9306102

    MathSciNet  Google Scholar 

  28. Olshanetsky M.A., Perelomov A.M. (1978). Quantum systems related to root systems, and radial parts of Laplace operators. Funct. Anal. Appl. 12: 121–128 math-ph/0203031

    Article  Google Scholar 

  29. Etingof P.I., Frenkel I.B., Kirillov Jr., A.A. (1995) Spherical functions on affine Lie groups. Duke Math. J. 80, 59–90 (1995) hep-th/9407047

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Fehér.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehér, L., Pusztai, B.G. A Class of Calogero Type Reductions of Free Motion on a Simple Lie Group. Lett Math Phys 79, 263–277 (2007). https://doi.org/10.1007/s11005-007-0146-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0146-2

Mathematics Subject Classification (2000)

Keywords

Navigation