Advertisement

Letters in Mathematical Physics

, Volume 79, Issue 3, pp 263–277 | Cite as

A Class of Calogero Type Reductions of Free Motion on a Simple Lie Group

  • L. Fehér
  • B. G. Pusztai
Article

Abstract

The reductions of the free geodesic motion on a non-compact simple Lie group G based on the G + × G + symmetry given by left- and right-multiplications for a maximal compact subgroup \({G_{+} \subset G}\) are investigated. At generic values of the momentum map this leads to (new) spin Calogero type models. At some special values the ‘spin’ degrees of freedom are absent and we obtain the standard BC n Sutherland model with three independent coupling constants from SU(n + 1,n) and from SU(n,n). This generalization of the Olshanetsky-Perelomov derivation of the BC n model with two independent coupling constants from the geodesics on G/G + with G = SU(n + 1,n) relies on fixing the right-handed momentum to a non-zero character of G +. The reductions considered permit further generalizations and work at the quantized level, too, for non-compact as well as for compact G.

Mathematics Subject Classification (2000)

37J35 53D20 17B80 70G65 

Keywords

Integrable systems Hamiltonian reduction Spin Calogero models BCn Sutherland model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calogero F. (1971). Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12: 419–436 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Olshanetsky M.A., Perelomov A.M. (1981). Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rept. 71: 313–400 CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Olshanetsky M.A., Perelomov A.M. (1983). Quantum integrable systems related to Lie algebras. Phys. Rept. 94: 313–404 CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Perelomov, A.M.: Integrable Systems of Classical Mechanics and Lie Algebras. Birkhäuser (1990)Google Scholar
  5. 5.
    Heckman G. (1994). Hypergeometric and spherical functions. In: Heckman, G., Schlichtkrull, H. (eds) Harmonic Analysis and Special Functions on Symmetric Spaces Perspectives in Mathematics, vol 16, pp 1–89. Academic, NewYork Google Scholar
  6. 6.
    Nekrasov, N.: Infinite-dimensional algebras, many-body systems and gauge theories. In: Morozov, A.Yu., Olshanetsky, M.A. (eds.) Moscow Seminar in Mathematical Physics. AMS Transl. Ser. 2, pp. 263–299. American Mathematics Social (1999)Google Scholar
  7. 7.
    D’Hoker E., Phong D.H. (1999). Seiberg–Witten theory and Calogero–Moser systems. Prog. Theor. Phys. Suppl. 135: 75–93 hep-th/9906027 ADSMathSciNetGoogle Scholar
  8. 8.
    van Diejen J.F., Vinet L. (eds.) (2000) Calogero–Moser–Sutherland Models. Springer, Heidelberg (2000) MATHGoogle Scholar
  9. 9.
    Sutherland B. (2004). Beautiful Models. World Scientific, Singapore MATHGoogle Scholar
  10. 10.
    Finkel F., Gómez-Ullate D., González-López A., Rodríguez M.A., Zhdanov R. (2004). A survey of quasi-exactly solvable systems and spin Calogero-Sutherland models. In: Tempesta, P. (eds) Superintegrability in Classical and Quantum Systems, pp 173–186. American Mathematical Society, New York Google Scholar
  11. 11.
    Etingof, P.: Lectures on Calogero–Moser systems. math.QA/0606233Google Scholar
  12. 12.
    Polychronakos A.P. (2006). Physics and mathematics of Calogero particles. J. Phys. A Math. Gen. 39: 12793–12845 hep-th/0607033 MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Aniceto I., Jevicki A. (2006). Notes on collective field theory of matrix and spin Calogero models. J. Phys. A Math. Gen. 39: 12765–12791 hep-th/0607152 MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Olshanetsky M.A., Perelomov A.M. (1976). Completely integrable Hamiltonian systems connected with semisimple Lie algebras. Invent. Math. 37: 93–108 MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Olshanetsky M.A., Perelomov A.M. (1976). Explicit solutions of some completely integrable systems. Lett. Nuovo Cim. 17: 97–101 MathSciNetGoogle Scholar
  16. 16.
    Inozemtsev V.I., Meshcheryakov D.V. (1985). Extension of the class of integrable dynamical systems connected with semisimple Lie algebras. Lett. Math. Phys. 9: 13–18 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Opdam E.M. (1988). Root systems and hypergeometric functions IV. Comp. Math. 67: 191–209 MATHMathSciNetGoogle Scholar
  18. 18.
    Oshima T., Sekiguchi H. (1995). Commuting families of differential operators invariant under the action of a Weyl group. J. Math. Sci. Univ. Tokyo 2: 1–75 MATHMathSciNetGoogle Scholar
  19. 19.
    Bordner A.J., Sasaki R., Takasaki K. (1999). Calogero–Moser models II: symmetries and foldings. Prog. Theor. Phys. 101: 487–518 hep-th/9809068 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Fehér L., Pusztai B.G. (2006). Spin Calogero models associated with Riemannian symmetric spaces of negative curvature. Nucl. Phys. B 751: 436–458 math-ph/0604073 CrossRefADSGoogle Scholar
  21. 21.
    Oblomkov A. (2004). Heckman–Opdam’s Jacobi polynomials for the BC n root system and generalized spherical functions. Adv. Math. 186: 153–180 math.RT/0202076 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Helgason S. (1978). Differential Geometry. Lie Groups and Symmetric Spaces. Academic, New York MATHGoogle Scholar
  23. 23.
    Knapp A.W. (2002). Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140. Birkhäuser, Boston Google Scholar
  24. 24.
    Ortega J.-P., Ratiu T.S. (2004). Momentum Maps and Hamiltonian Reduction Progress. in Mathematics vol. 222. Birkhäuser, Boston Google Scholar
  25. 25.
    Hochgerner, S.: Singular cotangent bundle reduction and spin Calogero–Moser systems. math.SG/0411068Google Scholar
  26. 26.
    Kazhdan D., Kostant B., Sternberg S. (1978). Hamiltonian group actions and dynamical systems of Calogero type. Commun. Pure Appl. Math. XXXI: 481–507 MathSciNetGoogle Scholar
  27. 27.
    Avan J., Babelon O., Talon M. (1994). Construction of the classical R-matrices for the Toda and Calogero models. Alg. Anal. 6: 67–89 hep-th/9306102 MathSciNetGoogle Scholar
  28. 28.
    Olshanetsky M.A., Perelomov A.M. (1978). Quantum systems related to root systems, and radial parts of Laplace operators. Funct. Anal. Appl. 12: 121–128 math-ph/0203031CrossRefGoogle Scholar
  29. 29.
    Etingof P.I., Frenkel I.B., Kirillov Jr., A.A. (1995) Spherical functions on affine Lie groups. Duke Math. J. 80, 59–90 (1995) hep-th/9407047 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsMTA KFKI RMKIBudapestHungary
  2. 2.Department of Theoretical PhysicsUniversity of SzegedSzegedHungary
  3. 3.Centre de Recherches MathématiquesUniversité de MontréalMontrealCanada
  4. 4.Department of Mathematics and StatisticsConcordia UniversityMontrealCanada

Personalised recommendations