Letters in Mathematical Physics

, Volume 79, Issue 2, pp 175–192 | Cite as

Simple Non-Linear Klein–Gordon Equations in Two Space Dimensions, with Long-Range Scattering

  • Erik Taflin


We establish that solutions, to the most simple non-linear Klein–Gordon (NLKG) equations in two space dimensions with mass resonance, exhibits long-range scattering phenomena. Modified wave operators and solutions are constructed for these equations. We also show that the modified wave operators can be chosen such that they linearize the non-linear representation of the Poincaré group defined by the NLKG.

Mathematics Subject Classification (2000)

35L70 35Q75 35P25 74J20 


non-linear representations non-linear Klein-Gordon equations long range scattering normal forms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delort J.M. (2001). Existence globale et comportement asymptotique pour l’équation de Klein–Gordon quasi linéaire à données petites en dimension 1. Ann. Sci. Ec. Norm. Sup. 34: 1–61 MATHMathSciNetGoogle Scholar
  2. 2.
    Flato M., Pinczon G. and Simon J.C.H. (1977). Non-linear representations of Lie groups. Ann. Sci. Ec. Norm. Sup. 10: 405–418 MATHMathSciNetGoogle Scholar
  3. 3.
    Flato M., Simon J.C.H. and Taflin E. (1987). On global solutions of the Maxwell–Dirac equations. Comm. Math. Phys. 112: 21–49 MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Flato, M., Simon, J.C.H., Taflin, E.: Asymptotic completeness, global existence and the infrared problem for the Maxwell–Dirac equations. Mem. Am. Math. Soc. 127(606), (1997)Google Scholar
  5. 5.
    Ginibre J. and Velo G. (2003). Long range scattering and modified wave operators for the Maxwell–Schrodinger system I. The case of vanishing asymptotic magnetic field. Commun. Math. Phys. 236: 395–448 MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Hörmander, L.: The lifespan of classical solutions of nonlinear hyperbolic equations. In: Lecture Notes in Mathematics, vol. 1256, pp. 214–280. Springer, Berlin Hedielberg New York (1987)Google Scholar
  7. 7.
    Hörmander L. (1997). Lectures on nonlinear hyperbolic differential equations. Springer, Berlin Heidelberg New York MATHGoogle Scholar
  8. 8.
    Lindblad H. and Soffer A. (2005). A remark on long range scattering for the nonlinear Klein–Gordon equation. J. Hyperbolic Differ. Eq. 2: 77–89 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lindblad H. and Soffer A. (2005). A remark on asymptotic completeness for the critical nonlinear Klein–Gordon equation. Lett. Math. Phys. 73: 249–258 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ozawa T. (1991). Long range scattering for nonlinear Schrödinger equations in one space dimension. Com. Math. Phys. 139: 479–493 MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Simon J.C.H. and Taflin E. (1985). Wave operators and analytic solutions for systems of non-linear Klein-Gordon and non-linear Schrödinger equations, Commun. Math. Phys. 99: 541–562 MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Simon J.C.H. and Taflin E. (1985). The Cauchy problem for non-linear Klein–Gordon equations. Commun. Math. Phys. 152: 433–478 CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Simon, J.C.H., Taflin, E.: Initial data for non-linear evolution equations and differentiable vectors of group representations. In: Mathematical Physics Studies, vol. 18, pp. 243–253. Kluwer Academic, Dordrecht (1995)Google Scholar
  14. 14.
    Taflin E. (1984). Formal linearization of nonlinear massive representations of the connected Poincaré group. J. Math. Phys. 25: 765–771 MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.EISTIEcole International des Sciences du Traitement de l’InformationCergyFrance

Personalised recommendations