Letters in Mathematical Physics

, Volume 77, Issue 1, pp 53–62 | Cite as

Supersymmetric WZ-Poisson Sigma Model and Twisted Generalized Complex Geometry



It has been shown recently that extended supersymmetry in twisted first-order sigma models is related to twisted generalized complex geometry in the target. In the general case there are additional algebraic and differential conditions relating the twisted generalized complex structure and the geometrical data defining the model. We study in the Hamiltonian formalism the case of vanishing metric, which is the supersymmetric version of the WZ-Poisson sigma model. We prove that the compatibility conditions reduce to an algebraic equation, which represents a considerable simplification with respect to the general case. We also show that this algebraic condition has a very natural geometrical interpretation. In the derivation of these results the notion of contravariant connections on twisted Poisson manifolds turns out to be very useful.


twisted Poisson sigma model supersymmetry twisted generalized complex geometry 

Mathematics Subject Classifications (2000)

53D17 53C15 53C80 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hitchin N.: Generalized Calabi–Yau manifolds. Quart. J. Math. Oxford Ser. 54, (2003) arXiv:math.DG/0209099Google Scholar
  2. 2.
    Gualtieri M. (2003). Generalized complex geometry. Oxford University, Oxford, DPhil thesis, arXiv:math.DG/0401221Google Scholar
  3. 3.
    Gates S.J., Hull C.M., Rocek M. (1984). Twisted multiplets and new supersymmetric nonlinear sigma models. Nucl. Phys. B 248:157CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Lindstrom U. (2004). Generalized N=(2,2) Supersymmetric non-linear sigma models. Phys. Lett. B 587:216–224 arXiv:hep-th/0401100CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Lindstrom U., Minasian R., Tomasiello A., Zabzine M. (2005). Generalized complex manifolds and supersymmetry. Commun. Math. Phys. 257:235–256 arXiv:hep-th/0405085CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Zabzine M. Hamiltonian perspective on generalized complex structure. arXiv:hep-th/0502137Google Scholar
  7. 7.
    Schaller P., Strobl T. (1994). Poisson structure induced (topological) field theories. Mod. Phys. Lett. A9:3129–3136 arXiv:hep-th/9405110ADSMathSciNetGoogle Scholar
  8. 8.
    Cattaneo A.S., Felder G. (2000). A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212: 591–611 arXiv: math.QA/9902090CrossRefMATHADSMathSciNetGoogle Scholar
  9. 9.
    Calvo, I., Falceto, F.: Star products and branes in Poisson-sigma models. arXiv:hep-th/0507050Google Scholar
  10. 10.
    Klimcik C., Strobl T. (2002). WZW-Poisson manifolds. J. Geom. Phys. 43:341–344 arXiv:math.SG/0104189CrossRefMATHADSMathSciNetGoogle Scholar
  11. 11.
    Bergamin L. (2005). Generalized complex geometry and the Poisson sigma model. Mod. Phys. Lett. A 20:985–996 arXiv:hep-th/0409283CrossRefMATHADSMathSciNetGoogle Scholar
  12. 12.
    Severa P., Weinstein A. (2001). Poisson geometry with a 3-form background. Prog. Theor. Phys. Suppl. 144:145 arXiv:math.SG/0107133ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Vaisman, I.: Lectures on the geometry of Poisson manifolds. Birkhäuser, (1994)Google Scholar
  14. 14.
    Fernandes R.L. (2000). Connections in Poisson geometry I. Holonomy and invariants. J. Differential Geom. 54:303–365 arXiv:math.DG/0001129MATHMathSciNetGoogle Scholar
  15. 15.
    Calvo I., Falceto F. (2004). Poisson reduction and branes in Poisson-sigma models. Lett. Math. Phys. 70:231–247 arXiv:hep-th/0405176CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations