Skip to main content
Log in

Differential Forms and the Noncommutative Residue for Manifolds with Boundary in the Non-product Case

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this Letter, for an even-dimensional compact manifold with boundary which has the non-product metric near the boundary, we use the noncommutative residue to define a conformal invariant pair. For a four-dimensional manifold, we compute this conformal invariant pair under some conditions and point out the way of computations in the general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler M. (1979). On a trace functional for formal pseudo-differential operators and the sympletic structure of the Korteweg-de Vries type equations. Invent. Math. 50:219–248

    Article  MATH  ADS  Google Scholar 

  2. Alberti, P.M., Matthes, R.: Connes’ trace formula and Dirac realization of Maxwell and Yang–Mills action, noncommutative geometry and the standard model of elementary particle physics (Hesselberg, 1999), pp. 40–74, Lecture Notes in Physics, vol. 596, Springer, Berlin Heidelberg New York

  3. Connes A. (1998). The action functinal in noncommutative geometry. Commun. Math. Phys. 117:673–683

    Article  ADS  MathSciNet  Google Scholar 

  4. Connes, A.: Quantized calculus and applications. In: Proceedings of the XIth international congress of mathematical physics (Paris, 1994), pp. 15–36, Internat Press, Cambridge, MA (1995)

  5. Fedosov B.V., Golse F., Leichtnam E., Schrohe E. (1996). The noncommutative residue for manifolds with boundary. J. Funct. Anal. 142:1–31

    Article  MATH  MathSciNet  Google Scholar 

  6. Guillemin V.W. (1985). A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues. Adv. Math. 55(2): 131–160

    Article  MATH  MathSciNet  Google Scholar 

  7. Kastler D. (1995). The Dirac operator and gravitation. Commun. Math. Phys. 166:633–643

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Kalau W., Walze M. (1995). Gravity, non-commutative geometry, and the Wodzicki residue. J. Geom. Phys. 16:327–344

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Manin Yu.I. (1979). Algebraic aspects of nonlinear differential equations. J. Sov. Math. 11:1–22

    Article  MATH  Google Scholar 

  10. Schrohe E. (1999). Noncommutative residue, Dixmier’s trace, and heat trace expansions on manifolds with boundary. Contemp. Math. 242:161–186

    MathSciNet  Google Scholar 

  11. Ugalde, W.J.: Differential forms and the Wodzicki residue. arXiv: Math, DG/0211361

  12. Wang Y.: Gravity and the Wodzicki residue for manifolds with boundary. preprint, available online at www.cms.zju.edu.cn/frontindex.asp?version=english/priprint

  13. Wang, Y.: Differential forms and the Wodzicki residue for manifolds with boundary. J. Geom. Phys. (in press) online: www.sciencedirect.com

  14. Wodzicki M. (1984). Local invariants of spectral asymmetry. Invent. Math. 75(1):143–178

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y. Differential Forms and the Noncommutative Residue for Manifolds with Boundary in the Non-product Case. Lett Math Phys 77, 41–51 (2006). https://doi.org/10.1007/s11005-006-0078-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-006-0078-2

Keywords

Subject Classifications

Mathematics Subject Classifications (2000)

Navigation