Letters in Mathematical Physics

, Volume 77, Issue 1, pp 41–51 | Cite as

Differential Forms and the Noncommutative Residue for Manifolds with Boundary in the Non-product Case

  • Yong Wang


In this Letter, for an even-dimensional compact manifold with boundary which has the non-product metric near the boundary, we use the noncommutative residue to define a conformal invariant pair. For a four-dimensional manifold, we compute this conformal invariant pair under some conditions and point out the way of computations in the general.


noncommutative residue for manifolds with boundary non-product metric conformal invariant 

Subject Classifications

noncommutative differential geometry noncommutative global analysis 

Mathematics Subject Classifications (2000)

58G20 53A30 46L87 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler M. (1979). On a trace functional for formal pseudo-differential operators and the sympletic structure of the Korteweg-de Vries type equations. Invent. Math. 50:219–248MATHCrossRefADSGoogle Scholar
  2. 2.
    Alberti, P.M., Matthes, R.: Connes’ trace formula and Dirac realization of Maxwell and Yang–Mills action, noncommutative geometry and the standard model of elementary particle physics (Hesselberg, 1999), pp. 40–74, Lecture Notes in Physics, vol. 596, Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Connes A. (1998). The action functinal in noncommutative geometry. Commun. Math. Phys. 117:673–683CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Connes, A.: Quantized calculus and applications. In: Proceedings of the XIth international congress of mathematical physics (Paris, 1994), pp. 15–36, Internat Press, Cambridge, MA (1995)Google Scholar
  5. 5.
    Fedosov B.V., Golse F., Leichtnam E., Schrohe E. (1996). The noncommutative residue for manifolds with boundary. J. Funct. Anal. 142:1–31MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Guillemin V.W. (1985). A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues. Adv. Math. 55(2): 131–160MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kastler D. (1995). The Dirac operator and gravitation. Commun. Math. Phys. 166:633–643MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Kalau W., Walze M. (1995). Gravity, non-commutative geometry, and the Wodzicki residue. J. Geom. Phys. 16:327–344MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Manin Yu.I. (1979). Algebraic aspects of nonlinear differential equations. J. Sov. Math. 11:1–22MATHCrossRefGoogle Scholar
  10. 10.
    Schrohe E. (1999). Noncommutative residue, Dixmier’s trace, and heat trace expansions on manifolds with boundary. Contemp. Math. 242:161–186MathSciNetGoogle Scholar
  11. 11.
    Ugalde, W.J.: Differential forms and the Wodzicki residue. arXiv: Math, DG/0211361Google Scholar
  12. 12.
    Wang Y.: Gravity and the Wodzicki residue for manifolds with boundary. preprint, available online at Scholar
  13. 13.
    Wang, Y.: Differential forms and the Wodzicki residue for manifolds with boundary. J. Geom. Phys. (in press) online: www.sciencedirect.comGoogle Scholar
  14. 14.
    Wodzicki M. (1984). Local invariants of spectral asymmetry. Invent. Math. 75(1):143–178MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Center of Mathematical SciencesZhejiang UniversityHangzhou ZhejiangChina
  2. 2.School of Mathematics and StatisticsNortheast Normal UniversityJilinChina

Personalised recommendations