Advertisement

Letters in Mathematical Physics

, Volume 77, Issue 1, pp 31–39 | Cite as

Quantum State Reconstruction of Many Body System Based on Complete Set of Quantum Correlations

  • X. F. Liu
  • C. P. Sun
Article
  • 43 Downloads

Abstract

We propose and study a universal approach for the reconstruction of quantum states of many body systems from symmetry analysis. The concept of minimal complete set of quantum correlation functions (MCSQCF) is introduced to describe the state reconstruction. As an experimentally feasible physical object, the MCSQCF is mathematically defined through the minimal complete subspace of observables determined by the symmetry of quantum states under consideration. An example with broken symmetry is analyzed in detail to illustrate the idea.

Keywords

quantum state reconstruction quantum correlation function 

Mathematics Subject Classifications (2000)

81R99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heisenberg W. (1930). The physical principle of quantum theory. University of Chicago Press, DoverGoogle Scholar
  2. 2.
    von Neumann J. (1955). Mathematical foundations of quantum mechanics. Princeton University of Press, New JerseyMATHGoogle Scholar
  3. 3.
    D’Ariano G.M., Yuen H.P. (1996). Phys. Rev. Lett 76:2832CrossRefPubMedADSGoogle Scholar
  4. 4.
    Wootters W.K., Zurek W.H. (1982). Nature 299:802CrossRefADSGoogle Scholar
  5. 5.
    Fano, U.: Rev. Mod. Phys. 29, 74(Section 6) (1957)Google Scholar
  6. 6.
    Smithey D.T., Beck M., Raymer M.G., Faridani A. (1993). Phys. Rev. Lett 70:1244CrossRefPubMedADSGoogle Scholar
  7. 7.
    Vogel K., Risken H. (1989). Phys. Rev. A 40:2847CrossRefPubMedADSGoogle Scholar
  8. 8.
    D’Ariano G.M., Macchiavello C., Paris M.G.A. (1994). Phys. Rev. A 50:4298CrossRefPubMedADSGoogle Scholar
  9. 9.
    Wootters W.K. (1998). Phys Rev Lett 80:2245CrossRefADSGoogle Scholar
  10. 10.
    O’Connor K.M., Wootters W.K. (2001). Phys. Rev. A 63:052302CrossRefADSGoogle Scholar
  11. 11.
    Wang X., Zanardi P. (2002). Phys. Lett. A 301:1CrossRefMATHADSMathSciNetGoogle Scholar
  12. 12.
    Wang X. (2002). Phys. Rev. A 66:034302CrossRefADSGoogle Scholar
  13. 13.
    Vidal G., Latorre J.I., Rico E., Kitaev A. (2003). Phys. Rev. Lett. 90:227902CrossRefPubMedADSGoogle Scholar
  14. 14.
    Gu S.-J., Deng S.-S., Li Y.-Q., Lin H.-Q. (2004). Phys. Rev. Lett 93:086402CrossRefPubMedADSGoogle Scholar
  15. 15.
    Qian X.F., Shi T., Li Y., Song Z., Sun C.P. (2005). Phys. Rev. A 72:012333CrossRefADSGoogle Scholar
  16. 16.
    Yang C.N. (1962). Rev. Mod. Phys 34:694CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Mathematics and LMAMPeking UniversityBeijingChina
  2. 2.Institute of Theoretical PhysicsThe Chinese Academy of ScienceBeijingChina

Personalised recommendations