Letters in Mathematical Physics

, Volume 73, Issue 1, pp 33–47 | Cite as

The Asymptotic Behavior of the Ergodic Measure of a Glauber + Kawasaki model

  • Adrian Hinojosa


We consider an interacting particle system given by the Glauber + Kawasaki dynamics. It is known that this process has a reaction diffusion equation as hydrodynamic limit. The ergodicity of this process in the presence of a metastable state (double well potential) was recently proved by S. Brassesco et al. In this Letter we prove that, in the limit, as ε → 0, the expected value of each spin converges to the global minimizer of the potential. We also prove decay of correlations of the ergodic measure.


exit times interacting particle systems Glauber + Kawasaki dynamics reaction diffusion equations hydrodynamic limits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brassesco, S., Presutti, E., Sidoravicius, V. and Vares, M. E.: Ergodicity and exponential convergence of a Glauber + Kawasaki process. On Dobrushin’s way. From probability theory to statistical physics, Amer. Math. Soc. Transl. Ser. 2 198, Amer. Math. Soc., Providence, RI, (2000). pp. 37–49.Google Scholar
  2. 2.
    Brassesco, S., Presutti, E., Sidoravicius, V., Vares, M. E. 2000Ergodicity of a Glauber + Kawasaki process with metastable statesMarkov Process. Related Fields6181203Google Scholar
  3. 3.
    Calderoni, P., Pellegrinotti, A., Presutti, E., Vares, M. E. 1989Transient bimodality in interacting particle systemsJ. Statist. Phys.55523577CrossRefGoogle Scholar
  4. 4.
    Masi, A., Ferrari, P. A., Lebowitz, J. E. 1986Reaction-diffusion equations for interacting particle systemsJ. Stat. Phys.44589644CrossRefGoogle Scholar
  5. 5.
    De Masi, A. and Presutti, E.: Mathematical methods for hydrodynamic limits, Lecture Notes in Mathematics 1501 Springer-Verlag (1991).Google Scholar
  6. 6.
    Durrett, R., Neuhauser, C. 1994Particle systems and reaction-diffusion equationsAnn. Probab.22289333Google Scholar
  7. 7.
    Hinojosa, A. 2004Exit time for a reaction-diffusion modelMarkov Process. Related Fields10705744MathSciNetGoogle Scholar
  8. 8.
    Liggett, T. M. 1985Interacting particle systemsGrundlehren der mathematischen WissenschaftenSpringer-Verlagvol. 276Google Scholar
  9. 9.
    Liggett, T.M. 1999Stochastic interacting systems: contact, voter and exclusion processesGrundlehren der mathematischen WissenschaftenSpringer-Verlagvol. 324Google Scholar
  10. 10.
    Schonmann, R., Shlosman, S. 1998Wulff droplets and the metastable relaxation of kinetic Ising modelsComm. Math. Phys.194389462CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Departamento de EstatísticaUFMGBelo HorizonteBrazil

Personalised recommendations