Letters in Mathematical Physics

, Volume 72, Issue 3, pp 197–210 | Cite as

Semi-Classical Twists for \({\mathfrak{sl}}_{3}\) and \({\mathfrak{sl}}_{4}\) Boundary r-Matrices of Cremmer–Gervais Type

  • M. Samsonov


We obtain explicit formulas for the semi-classical twists deforming the coalgebraic structure of \(U({\mathfrak{sl}}_{3})\) and \(U({\mathfrak{sl}}_{4})\). In rank 2 and 3 the corresponding universal R-matrices quantize the boundary r-matrices of Cremmer–Gervais type defining Lie Frobenius structures on the maximal parabolic subalgebras in \({\mathfrak{sl}}_{n}\).


Generalized Jordanian r-matrices Cremmer–Gervais quantization semi-classical twists. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Endelman, R., Hodges, T. 2000Generalized Jordanian R-matrices of Cremmer–Gervais typeLett. Math. Phys52225237math.QA/0003066CrossRefGoogle Scholar
  2. 2.
    Bergman, G. M. 1978The diamond lemma for ring theoryAdv Math29178218CrossRefGoogle Scholar
  3. 3.
    Faddeev, L. D., Kashaev, R. M. 1994Quantum dilogarithmModern Phys. Lett. A9427434hep-th/9310070CrossRefGoogle Scholar
  4. 4.
    Gerstenhaber, M., Giaquinto, A. 1997Boundary solutions of the classical Yang–Baxter equation.Lett. Math. Phys40337353math.QA/9609014CrossRefGoogle Scholar
  5. 5.
    Isaev, A. P., Ogievetsky, O. V. 2001On quantization of r-matrices for Belavin–Drinfeld TriplesPhys. Atom. Nucl6421262130math.QA/0010190CrossRefGoogle Scholar
  6. 6.
    Kac, V., Cheung, P. 2002Quantum CalculusSpringerBerlinGoogle Scholar
  7. 7.
    Khoroshkin, S. M., Stolin, A. A., Tolstoy, V. N. 2001q-Power function over q-commuting variables and deformed XXX and XXZ chainsPhys. Atom. Nucl6421732178math.QA/0012207CrossRefGoogle Scholar
  8. 8.
    Kulish, P. P., Lyakhovsky, V. D., Mudrov, A. I. 1999Extended Jordanian twists for Lie algebrasJ. Math. Phys4045694586math.QA/9806014CrossRefGoogle Scholar
  9. 9.
    Kulish, P. P., Mudrov, A. I. 1999Universal R-matrix for esoteric quantum groupLett. Math. Phys47139148math.QA/9804006CrossRefGoogle Scholar
  10. 10.
    Lyakhovsky, V. D., Samsonov, M. E. 2002Elementary parabolic twistJ. Algebra. Appl1413424math.QA/0107034CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Theoretical Department, Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations