Advertisement

Letters in Mathematical Physics

, Volume 74, Issue 1, pp 5–19 | Cite as

Felix Alexandrovich Berezin (A Brief Scientific Biography)

  • Robert A. Minlos
Article

Keywords

Berezin quantization functional integrals supermathematics 

Mathematics Subject Classifications (2000)

01A70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berezin F.A. Laplace operators on semi-simple Lie groups. Trudy Moskov. Mat. Obshch. 6, 371–463 (1957); ibid. 12, 453–466 (1963)Google Scholar
  2. Berezin F.A. (1965). Asymptotics of eigenfunctions of the multiparticle Schrödinger equation. Dokl. Akad. Nauk SSSR 163(4): 795–798MathSciNetGoogle Scholar
  3. Berezin F.A. (1964). Trace formula for the multiparticle Schrödinger equation. Dokl. Akad. Nauk SSSR 157(5): 1069–1072Google Scholar
  4. Berezin F.A. (1961). Remark on the Schrödinger equation with singular potential. Dokl. Akad. Nauk SSSR 137(5): 1011–1014MathSciNetGoogle Scholar
  5. Berezin F.A., Pokhil G.N., Finkelberg V.M. (1964). The Schrödinger equation for systems of one-dimensional particles with point-like interaction. Vestnik Moskov. Univ. 1, 21–28Google Scholar
  6. Berezin F.A., Minlos R.A., Faddeev L.D. (1964). Some mathematical questions in the quantum mechanics of systems with a large number of degrees of freedom. Proc. 4th Soviet Math. Congress Moscow 2, 532–541Google Scholar
  7. Berezin F.A. (1966). The method of second quantization. “Nauka”, Moscow (1965). English translation Academic Press, New YorkGoogle Scholar
  8. Berezin F.A. (1961). On the Thirring model. Zh. Èksper. Teoret. Fiz. 40(3): 885–894MathSciNetGoogle Scholar
  9. Berezin F.A., Syshko V.N. (1965). Relativistic two-dimensional model of a self-interacting fermion field with nonzero mass in the state of rest. Zh. Èksper. Teoret. Fiz. 48(5): 1293–1306Google Scholar
  10. Berezin F.A. (1968). On a model for quantum field theory. Mat. Sb. 76(1): 3–25 Math. USSR-Sbornik, 5(1), 1–23Google Scholar
  11. Golodets V.Ya. (1969). Description of the representations of anti-commuting relations. Uspekhi Mat. Nauk 24(4): 3–64 English translation in Russian Math. Surveys 24(4), 1–63 (1969)Google Scholar
  12. Berezin F.A. (1974). Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38(5): 1116–1175 English translation in Math. USSR-Izv. 8, 1109–1165 (1974)Google Scholar
  13. Berezin F.A. (1975). General concept of quantization. Comm. Math. Phys. 40, 153–174CrossRefADSMathSciNetGoogle Scholar
  14. Berezin F.A. (1975). Quantization on complex symmetric spaces. Izv. Akad. Nauk SSSR Ser. Mat. 39(2): 363–403 English translation in Math. USSR-Izv. 9, 341–379 (1975)Google Scholar
  15. Berezin F.A. (1967). About a representation of operators by means of functionals. Trudy Moskov. Mat. Obshch. 17, 117–196MathSciNetGoogle Scholar
  16. Berezin, F.A.: Wick and anti-Wick symbols of operators. Mat. Sb. 86(4), 578–610 (1971). English translation in Math. USSR-Sb. 15, 577–606 (1971)Google Scholar
  17. Berezin, F.A.: Covariant and contravariant symbols of operators. Izv. Akad. Nauk SSSR Ser. Mat. 36(5), 1134–1167 (1972). English translation in Math. USSR-Izv. 6, 1117–1151 (1973)Google Scholar
  18. Berezin, F.A., Shubin, M.A.: The Schrödinger equation. Moscow State University, Moscow (1983). Translated from Russian by Yu. Rajabov, D.A. Leites and N.A. Sakharova and revised by Shubin. With contributions by G.L. Litvinov and Leites. Mathematics and its Applications (Soviet Series), 66. Kluwer Academic Publishers, Dordrecht 1991Google Scholar
  19. Berezin F.A. (1963). On canonical transformations in representations of second quantization. Dokl. Akad. Nauk SSSR 150(5): 959–962MATHMathSciNetGoogle Scholar
  20. Berezin F.A. (1967). Automorphisms of the Grassmann algebra. Mat. Zametki 1(3): 269–276MATHMathSciNetGoogle Scholar
  21. Berezin, F.A., Kac, G.I.: Lie groups with commuting and anticommuting parameters. Mat. Sb. 82(3), 343–359 (1970). English translation in Math. USSR-Sb. 11, 311–325 (1971)Google Scholar
  22. Leites D.A. (1974). Spectra of graded commutative rings. Uspekhi Mat. Nauk 29(3): 209–210MATHMathSciNetGoogle Scholar
  23. Berezin F.A., Leites, D.A.: Supermanifolds. Dokl. Akad. Nauk SSSR 224(3), 505–508 (1975). English translation in Soviet Math. Dokl. 16, 1218–1222 (1975)Google Scholar
  24. Berezin F.A. (1979). Mathematical foundations of supersymmetric field theories. Yadernaya Fiz. 29(6): 1670–1687MathSciNetGoogle Scholar
  25. Berezin F.A. (1983). Introduction to the algebra and analysis of anticommuting variables. Moscow State University Publ., MoscowGoogle Scholar
  26. Berezin, F.A.: On the Lee model. Mat. Sb. 60(4), 425–446 (1963). English translation in Am. Math. Soc., Transl., II. Ser. 56, 249–272 (1966)Google Scholar
  27. Berezin, F.A., Sinai, Ya.G.: Existence of phase transfer of a lattice gas with attracting particles. Trudy Moskov. Mat. Obshch. 17, 197–212 (1967)Google Scholar
  28. Berezin, F.A.: The plane Ising model. Uspekhi Mat. Nauk 24(3), 3–22 (1969). English translation in Russian Math. Surveys, 24(3), 3–22 (1969)Google Scholar
  29. Berezin, F.A.: The number of closed nonselfintersecting contours on a plane lattice. Mat. Sb. 85(1), 49–64 (1971). English translation in Math. USSR-Sb. 14, 47–63 (1971)Google Scholar
  30. Berezin, F.A. and Minlos, R.A.: The thorny rose: opera libretto (translation in Russian from the Bielorussian libretto), Moscow university opera studio (1962)Google Scholar

Copyright information

© American Mathematical Society 1996

Authors and Affiliations

  1. 1.Dobrushin Mathematics Laboratory, Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations