Letters in Mathematical Physics

, Volume 69, Issue 1, pp 223–235 | Cite as

The Picard Groupoid in Deformation Quantization

  • Stefan Waldmann


In this Letter we give an overview on recent developments in representation theory of star product algebras. In particular, we relate the *-representation theory of *-algebras over rings C = R(i) with an ordered ring R and i2=−1 to the *-representation theory of *-algebras over and point out some properties of the Picard groupoid corresponding to the notion of strong Morita equivalence. Some Morita invariants are interpreted as arising from actions of this groupoid


Deformation quantization Representation theory Morita equivalence Picard groupoid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ara, P. 1999Morita equivalence for rings with involutionAlgebra Represent Theory.2227247Google Scholar
  2. Ara, P. 2000Morita equivalence and Pedersen IdealsProc. Amer. Math. Soc.12910411049Google Scholar
  3. Bass, H. 1968Algebraic K-theoryW. A. BenjaminNew YorkGoogle Scholar
  4. Bayen, F., Flato, M., Frønsdal, C., Lichnerowicz, A., Sternheimer, D. 1978Deformation theory and quantization.Ann Phys.11161151Google Scholar
  5. Beer, W. 1982On Morita equivalence of nuclear C*-algebrasJ Pure Appl Algebra.26249267Google Scholar
  6. Bénabou, J.: Introduction to bicategories, In: Reports of the Midwest Category Seminar, Springer-Verlag, 1967, pp. 1–77Google Scholar
  7. Bertelson, M., Cahen, M., Gutt, S. 1997Equivalence of star products.Classical Quantum Gravity.14A93A107Google Scholar
  8. Bordemann, M., Neumaier, N., Pflaum M., J., Waldmann, S. 2003On representations of star product algebras over cotangent spaces on Hermitian line bundlesJ Funct Anal.199147Google Scholar
  9. Bordemann, M., Waldmann, S. 1998Formal GNS construction and states in deformation quantizationComm. Math. Phys.195549583Google Scholar
  10. Brown, L.G., Green, P., Rieffel, M. 1977Stable isomorphism and strong Morita equivalence of C*-AlgebrasPacific J. Math.71349363Google Scholar
  11. Bursztyn, H. 2002Semiclassical geometry of quantum line bundles and Morita equivalence of star productsInternet. Math. Res. Notices.2002821846Google Scholar
  12. Bursztyn, H., Radko, O. 2003Gauge equivalence of Dirac structures and symplectic groupoidsAnn. Inst. Fourier53309337Google Scholar
  13. Bursztyn, H., Waldmann, S. 2001*-Ideals and formal Morita equivalence of *-algebrasInternet J Math.125555577Google Scholar
  14. Bursztyn, H, Waldmann, S. 2001Algebraic Rieffel induction, formal Morita equivalence and applications to deformation quantizationJ Geom Phys.37307364Google Scholar
  15. Bursztyn, H., Waldmann, S. 2002Bimodule deformations, Picard groups and contravariant connectionsK-Theory.25137Google Scholar
  16. Bursztyn, H., Waldmann, S. 2002The characteristic classes of Morita equivalent star products on symplectic manifoldsComm. Math. Phys.228103121Google Scholar
  17. Bursztyn, H. and Waldmann, S.: Completely positive inner products and strong Morita equivalence, Preprint (FR-THEP 2003/12) math.QA/0309402. To appear in Pacific J. Math.Google Scholar
  18. Bursztyn, H. and Weinstein, A.: Picard groups in Poisson geometry. Preprint math.SG/0304048, 2003. To appear in Moscow Math. JGoogle Scholar
  19. Cattaneo, A., Felder, G. 2000A path integral approach to the Kontsevich quantization formulaComm. Math. Phys.212591611Google Scholar
  20. Wilde, M., Lecomte, P. B. A. 1983Existence of star-products and of formal deformations of the Poisson lie algebra of arbitrary symplectic manifoldsLett. Math. Phys.7487496Google Scholar
  21. Dito G., Sternheimer D. Deformation quantization: genesis, developments and metamorphoses, In: G. Halbout (ed.), Deformation Quantization, Vol. 1, IRMA Lectures in Math. Theoret. Phys., Walter de Gruyter, Berlin, 2002, pp. 9–54Google Scholar
  22. Fedosov, B.V. 1994A simple geometrical construction of deformation quantizationJ. Differential Geom.40213238Google Scholar
  23. Gutt S.: Variations on deformation quantization, In: G. Dito and D. Sternheimer (eds), Conférence Moshé Flato 1999. Quantization, Deformations, and Symmetries, Math. Phys. Stud. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 217–254Google Scholar
  24. Haag, R. 1993Local Quantum Physics2Springer-Verlag.BerlinGoogle Scholar
  25. Jurčo, B., Schupp, P., Wess, J. 2002Noncommutative line bundles and Morita equivalenceLett. Math. Phys.61171186Google Scholar
  26. Kontsevich, M.: Deformation quantization of Poisson manifolds, I, Preprint q-alg/9709040, 1997Google Scholar
  27. Lance, E. C.: Hilbert C*-Modules. A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser. 210, Cambridge University Press, Cambridge, 1995Google Scholar
  28. Landsman N. P. Mathematical Topics between Classical and Quantum Mechanics, Springer Monogr. in Math., Springer-Verlag, Berlin, 1998Google Scholar
  29. Morita, , K.,  1958Duality for modules and its applications to the theory of rings with minimum conditionSci. Rep. Tokyo Kyoiku Daigaku Sect. A.683142Google Scholar
  30. Nest, R., Tsygan, B. 1995Algebraic index theoremComm. Math. Phys.172223262Google Scholar
  31. Omori, H., Maeda, Y., Yoshioka, A. 1991Weyl manifolds and deformation quantizationAdv. Math.85224255Google Scholar
  32. Raeburn, I. and Williams, D. P.: Morita Equivalence and Continuous-trace C*-Algebras, Math. Surveys Monogr. 60, Amer. Math. Soc., Providence, RI, 1998Google Scholar
  33. Rieffel, M.A. 1974Induced representations of C*-algebrasAdv. Math.13176257Google Scholar
  34. Rieffel M, A. 1974Morita equivalence for C*-algebras and W*-algebrasJ. Pure Appl. Math.55196Google Scholar
  35. Schmüdgen, K. 1990Unbounded Operator Algebras and Representation Theory, Operator TheoryBirkhäuser–VerlagBaselVol. 37:Google Scholar
  36. Weinstein, A. and Xu, P.: Hochschild cohomology and characteristic classes for star-products, In: A. Khovanskij, A. Varchenko, and V. Vassiliev (eds), Geometry of Differential Equations, Amer. Math. Soc., Providence, 1998, pp. 177–194Google Scholar
  37. Xu, P. 1991Morita equivalence of Poisson manifoldsComm. Math. Phys.142493509Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Fakultät für Mathematik und PhysikAlbert-Ludwigs-Universität Freiburg, Physikalisches InstitutFreiburgGermany

Personalised recommendations