Mathematical Geosciences

, Volume 46, Issue 3, pp 285–313 | Cite as

Construction and Efficient Implementation of Adaptive Objective-Based Designs of Experiments



This work is devoted to the development of a new and efficient procedure for the construction of adaptive model-based designs of experiments. This work couples kriging theory with design of experiments optimization techniques and its originality relies on two main ingredients: (i) the definition of a general criterion in the objective function that allows one to take into account the analyst’s choices in order to explore critical regions, and (ii) an efficient numerical implementation including a stabilization step to avoid numerical problems due to kriging matrix inversion and a computational cost reduction strategy that allows for the model’s use in industrial applications. After a full description of these key points, the resulting efficient algorithm is applied to extend over a territory in France a network of probes for environmental monitoring. This study leads to a final design of experiments where the new probes are located in undersampled regions of high population density. Moreover, it can be performed with an affordable computational cost, which is not the case with classical approaches based on an optimization over the whole domain.


Kriging Optimization Matrix conditioning Nuclear safety 



The authors would like to thank G. Manificat, C. Debayle, and J.M. Métivier from the radiological department of IRSN for providing the data related to the equivalent dose rate and to the population density.


  1. Ababou R, Bagtzoglou A, Wood E (1994) On the condition number of covariance matrices in kriging, estimation and simulation of random fields. Math Geol 26(1):99–133 CrossRefGoogle Scholar
  2. Barnes R, Watson A (1992) Efficient updating of kriging estimates and variances. Math Geol 24(1):129–133 CrossRefGoogle Scholar
  3. Benesty J, Gansler T (2006) Computation of the condition number of a nonsingular symmetric Toeplitz matrix with the Levinson-Durbin algorithm. IEEE Trans Signal Process 54(6):2362–2364 CrossRefGoogle Scholar
  4. Chevalier C, Bect J, Ginsbourger D, Picheny V, Richet Y, Vazquez E (2012) Fast kriging-based stepwise uncertainty reduction with application to the identification of an excursion set. Submitted to Technometrics Google Scholar
  5. Chiles JP, Delfiner P (1999) Geostatistics: modelling spatial uncertainty. Wiley, New York. 695 pp CrossRefGoogle Scholar
  6. Chojnacki E, Ounsy A (1996) Description of the IPSN method for the uncertainty and sensitivity analysis and the associated software. In: SUNSET. ASME/JSME ICONE, Louisiana, USA, vol 3, pp 545–550 Google Scholar
  7. Cressie NA (1993) Statistics for spatial data. Wiley, New York. 900 pp Google Scholar
  8. Delmelle EM, Goovaerts P (2009) Second-phase sampling designs for non-stationary spatial variables. Geoderma 153(1–2):205–216 CrossRefGoogle Scholar
  9. Emery X (2009) The kriging update equations and their application to the selection of neighboring data. Comput Geosci 13(1):211–219 CrossRefGoogle Scholar
  10. Fang K, Li R, Sudjianto A (2006) Design and modeling for computer experiments. Chapman & Hall/CRC, London. University of Michigan, 290 pp Google Scholar
  11. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York. 483 pp Google Scholar
  12. Gray R (2006) Toepliz and circulant matrices: a review. Now Publishers Inc, Boston-Delft. 93 pp Google Scholar
  13. Gubian S, Xiang Y, Suomela B, Hoeng J (2012) Generalized simulated annealing for efficient global optimization: the GenSA. Package for R. R J. doi: 10.1115/1.4001873.
  14. McKay M, Conover W, Beckman R (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245 Google Scholar
  15. Myers R, Montgomery D (1995) Response surface methodology-process and product optimization using design experiments. Wiley-Blackwell, New York. 704 pp Google Scholar
  16. Niederreiter H (1992) Random number generators and quasi-Monte Carlo methods. SIAM, Philadelphia. 247 pp CrossRefGoogle Scholar
  17. O’Dowd R (1991) Conditioning of coefficient matrices of ordinary kriging. Math Geol 23(5):721–739 CrossRefGoogle Scholar
  18. Pardo-Iguzquiza E (1998) Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. J Hydrol 210:206–220 CrossRefGoogle Scholar
  19. Picheny V, Ginsbourger D, Roustant O, Haftka RT (2010) Adaptive designs of experiments for accurate approximation of a target region. J Mech Des 132(7):071008. 9 pp CrossRefGoogle Scholar
  20. Posa D (1989) Conditioning of the stationary kriging matrices for some well-known covariance models. Math Geol 21(7):755–765 CrossRefGoogle Scholar
  21. Ranjan P, Haynes R, Karsten R (2011) A computationally stable approach to Gaussian process interpolation of deterministic computer simulation data. Technometrics 53(4):366–378 CrossRefGoogle Scholar
  22. Sacks J, Welch WJ, Mitchell TJ, Wynn P (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–423 CrossRefGoogle Scholar
  23. Sasena MJ, Papalambros PY, Goovaerts P (2002) Exploration of metamodeling sampling criteria for constrained global optimization. Eng Optim 34(3):263–278 CrossRefGoogle Scholar
  24. Sasena MJ, Parkinson M, Reed MP, Papalambros PY, Goovaerts P (2005) Improving an ergonomics testing procedure via approximation-based adaptive experimental design. J Mech Des 127:1006–1013 CrossRefGoogle Scholar
  25. St John R, Draper N (1975) D-optimality for regression designs: a review. Technometrics 17(1):15–23 CrossRefGoogle Scholar
  26. Wackernagel H (1998) Multivariate geostatistics. Springer, Berlin. 291 pp CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2013

Authors and Affiliations

  1. 1.Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSN-RES, SEMIA, LIMARSt Paul-Lez-DuranceFrance
  2. 2.Laboratoire de Micromécanique et d’Intégrité des Structures (MIST)IRSN-CNRS-UMIISaint Paul-Lez-DuranceFrance
  3. 3.Institut National de la Recherche Agronomique (INRA)Unité de biométrie et Intelligence Artificielle AuzevilleCastanet TolosanFrance

Personalised recommendations