Mathematical Geosciences

, Volume 42, Issue 7, pp 817–838 | Cite as

Poloidal and Toroidal Field Modeling in Terms of Locally Supported Vector Wavelets

  • W. Freeden
  • C. Gerhards
Special Issue


This paper deals with multiscale modeling of poloidal and toroidal fields such as geomagnetic field and currents. The wavelets are developed from scale-dependent regularizations of the Green function with respect to the Beltrami operator. They are constructed as to be locally compact, thus, allowing a locally reflected (zooming-in) reconstruction of the geomagnetic quantities. Finally, a reconstruction algorithm is indicated in form of a tree algorithm.


Magnetic field Mie representation Green’s function Regularization Locally supported wavelets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Backus GE (1986) Poloidal and toroidal fields in geomagnetic field modeling. Rev Geophys 24:75–109 CrossRefGoogle Scholar
  2. Backus GE, Parker R, Constable C (1996) Foundations of geomagnetism. Cambridge University Press, Cambridge Google Scholar
  3. Bayer M, Freeden W, Maier T (2001) A vector wavelet approach to iono- and magnetospheric geomagnetic satellite data. J Atmos Sol-Terr Phys 65:581–597 CrossRefGoogle Scholar
  4. Chambodut A, Panet I, Mandea M, Diament M, Holschneider M (2005) Wavelet frames an alternative to spherical harmonic representation of potential fields. J Geophys Int 163:875–899 CrossRefGoogle Scholar
  5. Engels U, Olsen N (1998) Computation of magnetic fields within source regions of ionospheric and magnetospheric currents. J Atmos Sol-Terr Phys 60:1585–1592 CrossRefGoogle Scholar
  6. Freeden W (1980) On integral formulas of the (unit) sphere and their applications to numerical computation of integrals. Computing 25:131–146 CrossRefGoogle Scholar
  7. Freeden W (1998) The uncertainty principle and its role in physical geodesy. In: Progress in geodetic science, pp. 225–236. Shaker, Aachen Google Scholar
  8. Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences. Springer, Heidelberg Google Scholar
  9. Freeden W, Grevens T, Schreiner M (1998) Constructive approximation on the sphere. Oxford Science Publications. Clarendon, Oxford Google Scholar
  10. Gerlich G (1972) Magnetfeldbeschreibung mit verallgemeinerten poloiloidalen und toroidalen skalaren. Z Naturforsch 8:1167–1172 Google Scholar
  11. Holschneider M, Chambodut A, Mandea M (2003) From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys Earth Planet Inter 135:107–124 CrossRefGoogle Scholar
  12. Hulot G, Sabaka TJ, Olsen N (2007) The present field. In: Treatise on geophysics. Geomagnetism, vol 5. Elsevier, Amsterdam Google Scholar
  13. Langel RA, Hinze WJ (1998) The magnetic field of the earth’s lithosphere. The satellite perspective. Cambridge University Press, Cambridge Google Scholar
  14. Maier T (2005) Wavelet-Mie-representations for solenoidal vector fields with applications to ionospheric geomagnetic data. SIAM J Appl Math 65:1888–1912 CrossRefGoogle Scholar
  15. Mayer C (2003) Wavelet modeling of ionospheric currents and induced magnetic fields from satellite data. PhD thesis, Geomathematics Group, University of Kaiserslautern Google Scholar
  16. Olsen N (1997) Ionospheric F-region currents at middle and low latitudes estimated from Magsat data. J Geophys Res 102:4563–4576 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2010

Authors and Affiliations

  1. 1.Geomathematics GroupUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations