Mathematical Geosciences

, Volume 40, Issue 3, pp 327–347 | Cite as

Indicator Kriging without Order Relation Violations

  • Raimon Tolosana-Delgado
  • Vera Pawlowsky-Glahn
  • Juan-Jose Egozcue
Open Access


Indicator kriging (IK) is a spatial interpolation technique aimed at estimating the conditional cumulative distribution function (ccdf) of a variable at an unsampled location. Obtained results form a discrete approximation to this ccdf, and its corresponding discrete probability density function (cpdf) should be a vector, where each component gives the probability of an occurrence of a class. Therefore, this vector must have positive components summing up to one, like in a composition in the simplex. This suggests a simplicial approach to IK, based on the algebraic-geometric structure of this sample space: simplicial IK actually works with log-odds. Interpolated log-odds can afterwards be easily re-expressed as the desired cpdf or ccdf. An alternative but equivalent approach may also be based on log-likelihoods. Both versions of the method avoid by construction all conventional IK standard drawbacks: estimates are always within the (0,1) interval and present no order-relation problems (either with kriging or co-kriging). Even the modeling of indicator structural functions is clarified.


Aitchison geometry Ilr coordinates Indicator variogram Logistic regression 


  1. Aitchison J (1984) Reducing the dimensionality of compositional data sets. Math Geol 16(6):617–636 CrossRefGoogle Scholar
  2. Aitchison J (1986) The statistical analysis of compositional data, Monographs on statistics and applied probability. Chapman & Hall, London (Reprinted in 2003 with additional material by The Blackburn Press) Google Scholar
  3. Billheimer D, Guttorp P, Fagan W (2001) Statistical interpretation of species composition. J Am Stat Assoc 96(456):1205–1214 CrossRefGoogle Scholar
  4. Bogaert P (1999) On the optimal estimation of the cumulative distribution function in presence of spatial dependence. Math Geol 3(2):213–239 Google Scholar
  5. Bogaert P (2002) Spatial prediction of categorical variables: The Bayesian maximum entropy approach. Stoch Environ Res Risk Assess 16:425–448 CrossRefGoogle Scholar
  6. Carle S, Fogg G (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–476 CrossRefGoogle Scholar
  7. Carr J (1994) Order relation correction experiments for probability kriging. Math Geol 26(5):605–621 CrossRefGoogle Scholar
  8. Carr J, Mao N (1993) A general-form of probability kriging for estimation of the indicator and uniform transforms. Math Geol 25(4):425–438 CrossRefGoogle Scholar
  9. Christakos G (1990) A Bayesian/maximum entropy view to the spatial estimation problem. Math Geol 22(7):763–777 CrossRefGoogle Scholar
  10. Deutsch C, Journel A (1998) GSLIB—geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York Google Scholar
  11. Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis. Math Geol 37(7):795–828 CrossRefGoogle Scholar
  12. Egozcue JJ, Pawlowsky-Glahn V (2006) Simplicial geometry for compositional data. In: Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V (eds) Compositional data analysis in the geosciences. Geological Society of London, London, pp 145–169 Google Scholar
  13. Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300 CrossRefGoogle Scholar
  14. Journel AG (1983) Nonparametric estimation of spatial distributions. Math Geol 15(3):445–468 CrossRefGoogle Scholar
  15. Juang K, Lee D, Hsiao C (1998) Kriging with cumulative distribution function of order statistics for delineation of heavy-metal contaminated soils. Soil Sci 163(10):797–804 CrossRefGoogle Scholar
  16. Lindley DV (1964) The Bayesian analysis of contingency tables. Ann Math Stat 35(4):1622–1643 CrossRefGoogle Scholar
  17. Mateu-Figueras G, Pawlowsky-Glahn V, Barceló-Vidal C (2003) Distributions on the simplex. In: Thió-Henestrosa S, Martín-Fernández JA (eds) Compositional data analysis workshop—CoDaWork’03, proceedings. Universitat de Girona, Girona Google Scholar
  18. Matheron G (1976) A simple substitute for the conditional expectation: The disjunctive kriging. In: Guarascio M, David M, Huijbregts C (eds) Advanced geostatistics in the mining industry. NATO advances study institute series; series C: mathematical and physical sciences, vol 24. Reidel, Dordrecht, pp 221–236 Google Scholar
  19. Matheron G (1993) Une conjecture sur la covariance d’un ensemble aleatoire. In: Cahiers de geostatistique, vol 3. Ecole de Mines de Paris, Fontainebleau, pp 107–113 Google Scholar
  20. Myers DE (1983) Estimation of linear combinations and co-kriging. Math Geol 15(5):633–637 CrossRefGoogle Scholar
  21. Pardo-Igúzquiza E, Dowd P (2005) Multiple indicator cokriging with application to optimal sampling for environmental monitoring. Comput Geosci 31(1):1–13 CrossRefGoogle Scholar
  22. Pawlowsky V (1989) Cokriging of regionalized compositions. Math Geol 21(5):513–521 CrossRefGoogle Scholar
  23. Pawlowsky-Glahn V (2003) Statistical modelling on coordinates. In: Thió-Henestrosa S, Martín-Fernández JA (eds) Compositional data analysis workshop—CoDaWork’03, proceedings. Universitat de Girona, Girona Google Scholar
  24. Pawlowsky-Glahn V, Egozcue JJ (2001) Geometric approach to statistical analysis on the simplex. Stoch Environ Res Risk Assess 15(5):384–398 CrossRefGoogle Scholar
  25. Pawlowsky-Glahn V, Egozcue JJ (2002) BLU estimators and compositional data. Math Geol 34:259–274 CrossRefGoogle Scholar
  26. Pawlowsky-Glahn V, Olea RA (2004) Geostatistical analysis of compositional data. Studies in mathematical geology, vol 7. Oxford University Press, Oxford Google Scholar
  27. Sullivan J (1984) Conditional recovery estimation through probability kriging—theory and practice. In: Geostatistics for natural resources characterization, 2nd edn. NATO-ASI, Stanford Google Scholar
  28. Suro-Perez V, Journel A (1991) Indicator principal component kriging. Math Geol 23(5):759–788 CrossRefGoogle Scholar
  29. Tolosana-Delgado R (2006) Geostatistics for constrained variables: Positive data, compositions and probabilities. Applications to environmental hazard monitoring. PhD Thesis, Universitat de Girona, Girona, Spain, p 198 Google Scholar
  30. Tolosana-Delgado R, Pawlowsky-Glahn V (2007) Kriging regionalized positive variables revisited sample space and scale considerations. Math Geol 39(6):529–558 CrossRefGoogle Scholar
  31. Tolosana-Delgado R, Pawlowsky-Glahn V, J Egozcue J, van den Boogaart KG (2005) A compositional approach to indicator kriging. In: Cheng Q, Bonham-Carter G (eds) 2005 annual conference of the international association for mathematical geology (IAMG), Toronto, Canada, pp 651–656 Google Scholar
  32. Vargas-Guzman J, Dimitrakopoulos R (2003) Successive nonparametric estimation of conditional distributions. Math Geol 35(1):39–52 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Raimon Tolosana-Delgado
    • 1
  • Vera Pawlowsky-Glahn
    • 2
  • Juan-Jose Egozcue
    • 3
  1. 1.Department of Sedimentology and Environmental GeologyUniversity of GöttingenGöttingenGermany
  2. 2.Department of Informatics and Applied MathematicsUniversity of GironaGironaSpain
  3. 3.Department of Applied Mathematics IIITechnical University of CataloniaBarcelonaSpain

Personalised recommendations