Mathematical Geology

, Volume 38, Issue 8, pp 1017–1025 | Cite as

Application of the Multivariate Runs Test to Compositional Data



minimum spanning tree ternary diagrams taxi-cab metric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchison, J., 1984, The statistical analysis of geochemical compositions: Math. Geol., v. 16, no. 6, p. 531–564.CrossRefGoogle Scholar
  2. Aitchison, J., 1986, The statistical analysis of compositional data: Chapman and Hall, London, 416 p.Google Scholar
  3. Baxter, M. J., Cool, H. E. M., and Jackson, C. M., 2005, Further studies in the compositional variability of colorless Romano-British vessel glasses: Archaeometry, v. 47, no. 1, p. 47–68.CrossRefGoogle Scholar
  4. Conover, W. J., 1971, Practical nonparametric statistics: John Wiley, New York, 462 p.Google Scholar
  5. Davis, J. C., 1973, Statistics and data analysis in geology: John Wiley, New York, 550 p.Google Scholar
  6. Friedman, J. H., and Rafsky, L. C., 1979, Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample testing: Ann. Stat., v. 7, no. 4, p. 697–717.Google Scholar
  7. Friedman, J. H., and Rafsky, L. C., 1981, Graphics for the multivariate two-sample problem: J. Am. Stat. Assoc., v. 76, no. 374, p. 277–287.CrossRefGoogle Scholar
  8. Gibbons, J. D., and Chakraborti, S., 2003, Nonparametric Statistical Inference, 4th ed.: Marcel Dekker, New York, 645 p.Google Scholar
  9. Miller, W. E., 2003, Revisting the geometry of a ternary diagram with the half-taxi metric: Math. Geol., v. 34, no. 3, p. 275–290.CrossRefGoogle Scholar
  10. Prim, R. C., 1957, Shortest connection networks and some generalizations: Bell Syst. Tech. J., v. 36, p. 1389–1401.Google Scholar
  11. Reingold, E. M., Nievergelt, J., and Deo, N., 1977, Combinatorial algorithms: Theory and practice: Prentice-Hall, Englewood Cliffs, 433 p.Google Scholar
  12. Rollinson, H. R., 1993, Using geochemical data: Longman, Edinburgh Gate, 352 p.Google Scholar
  13. Sharp, W. E., 2006, The graph median–-A stable alternative measure of central tendency for compositional data sets: Math. Geol., v. 38, no. 2, p. 221–229.Google Scholar
  14. Shurtz, R. F., 2003, Compositional geometry and mass conservation: Math. Geol., v. 35, no. 8, p. 927–937.CrossRefGoogle Scholar
  15. Wald, A., and Wolfowitz, J., 1940, On a test whether two samples are from the same population: Ann. Math. Stat, v. 11, p. 147–162.Google Scholar

Copyright information

© International Association for Mathematical Geology 2007

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of South CarolinaColumbiaUSA

Personalised recommendations