Mathematical Geology

, Volume 37, Issue 4, pp 327–336 | Cite as

Fractal Analysis of the Gray-Scale Intensity Data of Finely Laminated Sediments from Bainbridge Crater Lake, Galápagos

  • N. A. Bryksina
  • W. M. Last


The gray-scale intensity data of finely laminated sediments from Bainbridge Crater Lake, Galápagos, were analyzed in terms of Hurst exponent and fractal dimension. The sediment record preserved in this volcanic maar provides a continuous history of past El Niño/Southern Oscillation (ENSO) events over the last 6200 years. Accelerator mass spectrometry radiocarbon data show that sedimentation rate was not constant for whole core. To take into consideration this fact gray-scale intensity data from analyses of X-radiography images of a 4.1 m long core from this basin were divided into Data 1 and Data 2. Data 1 corresponds to the more recent part of stratigraphic sequence, which was deposited since 3000 yr BP; Data 2 is from the earlier part of record between 6200 and 3000 yr BP. A persistent behavior with a Hurst exponent of H = 0.88 and H = 0.8 was found by power spectrum analysis method for Data 1 and Data 2, respectively. The width method of analysis shows that ENSO fluctuation before 3000 yr BP had a persistent behavior on a time-scale up to 26 years, while the more recent El Niño occurrences have a persistent behavior on a time-scale up to 5.6 years.

Key Words

Hurst exponent persistent behavior width and power spectrum methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baxter, K., 2003, Image analysis of laminated sediments in Bainbridge Crater Lake, Galápagos Islands, with possible correlation to El Niño: Unpublished thesis, University of Manitoba, 80 p.Google Scholar
  2. Belsham, R. P., Last, W. M., Riedinger, M. A., Steinitz-Kannan, M., and Brenner, M., 1996, Paleolimnology of salt lakes of the Galápagos Islands: Geol. Assoc. Canada, Program with Abstracts, v. 21, p. 7.Google Scholar
  3. Bodri, L., 1994, Fractal analysis of climatic data—mean annual temperature records in Hungary: Theor. Appl. Climatol., v. 49, no. 1, p. 53–57.CrossRefGoogle Scholar
  4. Breslin, M. C., and Belward, J. A., 1999, Fractal dimensions for rainfall time series: Math. Comput. Simulation, v. 48, p. 437–446.CrossRefGoogle Scholar
  5. Bryxina, N. A., Dublyansky, Yu. V., Halden, N. M., Campbell, J. L., and Teesdale, W. J., 2000, Statistical characteristics of oscillatory zoning in cave calcite—popcorn from Hungary: Dokl. Akad. Nauk., v. 372, no. 4, p. 514–517.Google Scholar
  6. Bryxina, N. A., Halden, N. M., and Ripinen, O. I., 2002, Oscillatory zoning in an agate from Kazakhstan: Autocorrelation functions and fractal statistics of trace element distributions: Math. Geol., v. 34, no. 8, p. 915–927.Google Scholar
  7. Couper-Johnston, R., 2000, El Niño: Hodder & Stoughton, London, 354 p.Google Scholar
  8. Davis, J. R., 1986, Statistics and data analysis in geology: Wiley, New York, 550 p.Google Scholar
  9. Diaz, H. F., and Maekgraf, V., 1992, El Niño historical and paleoclimatic aspects of the Southern Oscillation: Cambridge University Press, Cambridge, 476 p.Google Scholar
  10. Dubuc, B., Quiniou, J. F., Roques-Carmes, C., Tricot, C., and Zucker, S. W., 1989, Evaluating the fractal dimension of profiles: Phys. Rev. A, v. 39, no. 3, p. 1500–1512.CrossRefPubMedGoogle Scholar
  11. Feder, J., 1988, Fractals: Plenum Press, New York, 283 p.Google Scholar
  12. Fluegeman, R. H., Snow, R. S., 1989, Fractal analysis of long-range paleoclimatic data: Oxygen isotope record of Pacific core V28–239: PAGEOPH, v. 131, p. 307.Google Scholar
  13. Halden, N. M., and Hawthorne, F. C., 1993, The fractal geometry of oscillatory zoning in crystals: Application to zircon: Am. Mineralogist, v. 78, p. 1113–1116.Google Scholar
  14. Holten, T., Jamtveit, B., Meakin, P., Cortini, J. B., and Austrheim, H., 1997, Statistical characteristics and origin of oscillatory zoning in crystals: Am. Mineralogist, v. 82, p. 596–606.Google Scholar
  15. Holten, T., Jamtveit, B., and Meakin, P., 1998, Self-affine fractal geometry in agate: Eur. J. Mineral., v. 10, p. 149–153.Google Scholar
  16. Komm, R. W., 1995, Hurst analysis of Mt. Wilson rotation measurements: Solar Phys., v. 156, p. 17–28.CrossRefGoogle Scholar
  17. Last, W. M., Bryxina, N. A., Baxter, K., Riedinger, M., and Brenner, M., 2003, Mineralogy, geochemistry and event stratigraphy of Bainbridge Crater Lake, Galápagos Islands: International Limnogeology Congress, Tucson, Abstracts Volume, p. 153.Google Scholar
  18. Last, W. M., Pooler, S., Belsham, R., Riedinger, M. A., Brenner, M., and Steinitz-Kannan, M., 2000, Proceedings of the 8th International Paleolimnology Symposium, on Paleohydrology and Paleochemistry of Salt Lakes of the Galápagos Islands, Queen’s University, Kingston, p. 34–35.Google Scholar
  19. Mandelbrot, B. B., and Wallis, J. R., 1969, Some long-run properties of geophysical records: Water Resour. Res., v. 5, no. 2, p. 321–340.Google Scholar
  20. Mandelbrot, B. B., 1982, The fractal geometry of nature: W. H. Freeman, San Francisco, California, 468 p.Google Scholar
  21. Moy, C. M., Seltzer, G. O., Rodbell, D. T., and Anderson, D. M., 2002, Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch: Nature, v. 420, no. 14, p. 162–165.CrossRefPubMedGoogle Scholar
  22. Prokoph, A., 1999, Fractals, multifractals and sliding window correlation dimension analysis of sedimentary time series: Comput. Geosci., v. 25, no. 9, p. 1009–1021.CrossRefGoogle Scholar
  23. Riedinger, M., Last, W. M., and Brenner, M., 1998, Paleoenvironmental reconstruction from Bainbridge Crater Lake, Galápagos Islands: Geol. Soc. Amer. Abstracts with Program, p. 161–162.Google Scholar
  24. Riedinger, M. A., Steinitz-Kannan, M., Last, W. M., and Brenner, M., 2002, A ∼6100 14C yr record of El Niño activity from the Galápagos Islands: J. Paleolimnol., v. 27, p. 1–7.CrossRefGoogle Scholar
  25. Turcotte, D. L., 1992, Fractals and chaos in geology and geophysics: Cambridge University Press, Cambridge, 221 p.Google Scholar

Copyright information

© International Association for Mathematical Geology 2005

Authors and Affiliations

  1. 1.Institute of Mineralogy and PetrographyNovosibirskRussia
  2. 2.Department of Geological SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations