Advertisement

Mathematical Geology

, Volume 37, Issue 2, pp 163–181 | Cite as

Variograms of Order ω: A Tool to Validate a Bivariate Distribution Model

  • Xavier Emery
Article

Abstract

The multigaussian model is used in mining geostatistics to simulate the spatial distribution of grades or to estimate the recoverable reserves of an ore deposit. Checking the suitability of such model to the available data often constitutes a critical step of the geostatistical study. In general, the marginal distribution is not a problem because the data can be transformed to normal scores, so the check is usually restricted to the bivariate distributions. In this work, several tests for diagnosing the two-point normality of a set of Gaussian data are reviewed and commented. An additional criterion is proposed, based on the comparison between the usual variogram and the variograms of lower order: the latter are defined as half the mean absolute increments of the attribute raised to a power between 0 and 2. This criterion is then extended to other bivariate models, namely the bigamma, Hermitian and Laguerrian models. The concepts are illustrated on two real data-sets. Finally, some conditions to ensure the internal consistency of the variogram under a given model are given.

Keywords

isofactorial models Bigaussian distribution diffusion-type random functions madogram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., and Stegun, I., 1972, Handbook of mathematical functions, 9th printing: Dover Publications Inc., New York, 1046 p.Google Scholar
  2. Armstrong, M., and Matheron, G., 1986, Disjunctive kriging revisited: Part I: Math. Geol., v. 18, no. 8, p. 711–728.CrossRefGoogle Scholar
  3. Boulanger, F., 1990, Modélisation et simulation de variables régionalisées, par des fonctions aléatoires stables: unpubl. Doctoral thesis, Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau, 385 p.Google Scholar
  4. Chilès, J.-P., and Delfiner, P., 1999, Geostatistics: Modeling spatial uncertainty: Wiley, New York, 696 p.Google Scholar
  5. Cressie, N., and Hawkins, D. M., 1980, Robust estimation of the variogram: Math. Geol., v. 12, no. 2, p. 115–125.CrossRefGoogle Scholar
  6. Emery, X., 2002, Conditional simulation of nongaussian random functions: Math. Geol., v. 34, no. 1, p. 79–100.CrossRefGoogle Scholar
  7. Emery, X., 2003, Disjunctive kriging with hard and imprecise data: Math. Geol., v. 35, no. 6, p. 699–718.CrossRefMathSciNetGoogle Scholar
  8. Emery, X., 2004, Simulation conditionnelle de modèles isofactoriels: unpubl. Doctoral thesis, Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau, 199 p.Google Scholar
  9. Goovaerts, P., 1997, Geostatistics for natural resources evaluation: Oxford University Press, New York, 480 p.Google Scholar
  10. Guibal, D., and Remacre, A. Z., 1984, Local estimation of the recoverable reserves: Comparing various methods with the reality on a porphyry copper deposit, in Verly, G., David, M., Journel, A. G., and Maréchal, A., eds., Geostatistics for natural resources characterization: Reidel, Dordrecht, the Netherlands, p. 435–448.Google Scholar
  11. Hu, L.-Y., 1988, Mise en œ uvre du modèle gamma pour l’estimation des distributions spatiales: unpubl. Doctoral thesis, Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau, 142 p.Google Scholar
  12. Journel, A. G., 1987, Geostatistics for the environmental sciences: Department of Applied Earth Sciences, Stanford University, 135 p.Google Scholar
  13. Lajaunie, C., and Lantuéjoul, C., 1989, Setting up the general methodology for discrete isofactorial models, in Armstrong, M., ed., Geostatistics, Proceedings of the third international geostatistics congress: Kluwer Academic, Dordrecht, the Netherlands, Vol. 1, p. 323–334.Google Scholar
  14. Lantuéjoul, C., 1994, Nonconditional simulation of stationary isotropic multigaussian random functions, in Armstrong, M., and Dowd, P. A., eds., Geostatistical simulations: Kluwer Academic, Dordrecht, the Netherlands, p. 147–177.Google Scholar
  15. Maréchal, A., 1976, The practice of transfer functions: numerical methods and their applications, in Guarascio, M., David, M., and Huijbregts, Ch. J., eds., Advanced geostatistics in the mining industry: Reidel, Dordrecht, the Netherlands, p. 253–276.Google Scholar
  16. Matheron, G., 1976, A simple substitute for conditional expectation: The disjunctive kriging, in Guarascio, M., David, M., and Huijbregts, Ch. J., eds., Advanced geostatistics in the mining industry: Reidel, Dordrecht, the Netherlands, p. 221–236.Google Scholar
  17. Matheron, G., 1982, La déstructuration des hautes teneurs et le krigeage des indicatrices: Internal report N-761, Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau, 33 p.Google Scholar
  18. Matheron, G., 1987, Suffit-il, pour une covariance, d’être de type positif?: Sciences de la Terre, série informatique géologique, v. 26, p. 51–66.Google Scholar
  19. Matheron, G., 1989, The internal consistency of models in geostatistics, in Armstrong, M., ed., Geostatistics, Proceedings of the third international geostatistics congress: Kluwer Academic, Dordrecht, the Netherlands, Vol. 1, p. 21–38.Google Scholar
  20. Matheron, G., 1993, Une conjecture sur la covariance d’un ensemble aléatoire: Cahiers de géostatistique, Fascicule 3, Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau, p. 107–113.Google Scholar
  21. Rivoirard, J., 1989, Models with orthogonal indicator residuals, in Armstrong, M., ed., Geostatistics, Proceedings of the third international geostatistics congress: Kluwer Academic, Dordrecht, the Netherlands, Vol. 1, p. 91–107.Google Scholar
  22. Rivoirard, J., 1994, Introduction to disjunctive kriging and nonlinear geostatistics: Oxford University Press, Oxford, 181 p.Google Scholar
  23. Subramanyam, A., and Pandalai, H. S., 2001, A characterization of symmetric isofactorial models: Math. Geol., v. 33, no. 1, p. 103–114.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geology 2005

Authors and Affiliations

  1. 1.Department of Mining EngineeringUniversity of ChileSantiagoChile

Personalised recommendations