Skip to main content
Log in

Methods for the Evaluation of Strength and Durability of Fiber-Reinforced Concretes (A Survey)

  • Published:
Materials Science Aims and scope

The proposed survey is devoted to the analysis and synthesis of the results of investigations of the deformation and fracture of fiber-reinforced concretes. We present a survey of the following aspects of this problem: development and application of fiber-concrete technologies, basic parameters of the structure of fiber concretes and specific features of their deformation and fracture, and the methods for the evaluation of their strength and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. V. B. Bozhydarnik, O. E. Andreikiv, and H. T. Sulym, Fracture Mechanics, Strength, and Durability of Continuous Reinforced Composites [in Ukrainian], Vol. 1: Foundations of the Fracture Mechanics of Continuous Reinforced Composites, Nadstyr’ya, Luts’k (2007).

  2. V. B. Bozhydarnik, O. E. Andreikiv, and H. T. Sulym, Fracture Mechanics, Strength, and Durability of Continuous Reinforced Composites [in Ukrainian], Vol. 2: Mathematical Methods of the Fracture Mechanics of Continuous Reinforced Composites, Nadstyr’ya, Luts’k (2007).

  3. “Reinforced concrete in the XXI century,” in: State and Prospects of the Development of Concrete and Reinforced Concrete in Russia [in Russian], Gotika, Moscow (2001), pp. 216–223.

  4. Yu. M. Bazhenov and V. R. Falikman, “New century: new efficient concretes and technologies,” in: Concrete at the Boundary of the Third Millennium: Proc. І All-Russian Conf. Probl. Concrete Reinforced Concrete (Sept. 9–14, 2001) [in Russian], Vol. 1, Assotsiatsiya “Zhelezobeton”, Moscow (2001), pp. 91–101.

  5. V. Meshcherin, “Prevention of crack initiation in concrete with the help of its fiber reinforcement,” Beton Zhelezobeton, No. 1 (6), 50–57 (2012).

    Google Scholar 

  6. Fiber Concrete in Japan. Express Information. Building Structures [in Russian], VNIIIS Gosstroya SSSR, Moscow (1983).

  7. VSN 56-97 Designing and Fundamentals of Technologies of the Production of Fiber-Concrete Structures [in Russian], Moscow (1997).

  8. “Steel fiber concrete and products from it,” in: Ser. “Building Materials” [in Russian], Issue 7, VNIINTPI, Moscow (1990).

  9. “Glass fiber concrete and products from it,” in: Ser. “Building Materials” [in Russian], Issue 5, VNIINTPI, Moscow (1990).

  10. D. L. Khun, “Properties of concretes containing microsilica and carbon fiber processed by silanes,” in: Express Information, Issue 1 (2001), pp. 33–37.

  11. M. Schmidt and E. Fenling, “Ultra-Hochfester Beton. Perspective für die Betonfertigteilindustrie,” Beton Fertigteiltechnik, No. 1, 16–19 (2003).

    Google Scholar 

  12. ACI 440.1R-2006. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, American Concrete Institute (2006).

  13. L. I. Sycheva and A. V. Volovika, Materials Reinforced with Fiber [in Russian], Stroiizdat, Moscow (1982).

    Google Scholar 

  14. A. P. S. Selvadurai, “The opening of an elastically bridges penny shaped flaw in a fiber reinforced composite by concentrated surface loads,” Wiss. Z., No. 2, 187–190 (1982).

    Google Scholar 

  15. M. Schmidt, “50 Jahre Entwicklung bei Zement, Zusatzmittel und Beton. Schriftenreihe Baustoffe,” in: M. Schmidt, Centrum Baaaustoffe und Material-prufund, No. 2. 189–198 (2003).

  16. B. A. Kyrlov and V. P. Trambovetsky, “Investigation of fiber-reinforced materials in the USSR,” in: A. M. Neville (editor), RILEM Symp. on Fiber-Reinforced Cement and Concrete, II Paper 8.5, London (1975), pp. 419–424.

  17. F. N. Rabinovich, Dispersion Reinforced Concretes [in Russian], Stroiizdat, Moscow (1989).

    Google Scholar 

  18. O. O. Dovzhenko, I. A. Yurko, and V. V. Kravchenko, “Application of fiber reinforced concrete in Ukraine. Properties of dispersion reinforced concretes,” Kommun. Khoz. Gorodov, No. 90, 267–272 (2009).

    Google Scholar 

  19. O. Yu. Doroshenko and Yu. M. Doroshenko, “Dispersion reinforced concrete as a reliable and efficient material for highway engineering (continuation),” Transp. Stroit. Ukrainy, No. 5, 16–20 (2007).

    Google Scholar 

  20. F. N. Rabinovich, “Application of fiber reinforced concretes in the structures of industrial buildings,” in: Fiber Reinforced Concrete and Its Application in Building: Proc. NIIZhB, Moscow (1979), pp. 27–38.

  21. F. N. Rabinovich, “Some problems of the dispersion reinforcement of concrete materials with glass fiber,” in: Dispersion Reinforced Concretes and Structures from Them: Abstr. Pap. Republican Conf. [in Russian], Riga (1975), pp. 68–72.

  22. F. N. Rabinovich and L. G. Kurbatov, “Application of steel fiber concrete in the designs of engineering structures,” Beton Zhelezobeton, No. 12, 22–25 (1984).

    Google Scholar 

  23. S. Kordts, “Selbstverdichtender Beton,” in: Forschungskolloguium des DafStb, Düsseldorf (2002), pp. 109–120.

  24. P. Kleingelhofer, “Noue Betouverflissiger auf Basis Polycarboxylat,“ in: II Proc. 13., Bd. 1, Ybasil. Weimar (1997), pp. 491–495.

  25. A. Magumdar, Glass Fiber Reinforced Cement, London (1991).

  26. J. N. Kar and A. K. Pal, “Strength of fiber-reinforced concrete,” Proc. ASCE, J. Structural Division, 98, No. 5, 1053–1068 (1972).

    Google Scholar 

  27. X. She and Ya. Xue, “Summary of behaviour of steel fiber reinforced concrete,” in: Іnternat. Conf. Electric Technol. Civil Eng. (ICETCE 2011) (Apr. 22–24, 2011), Lushan (2011), pp. 800–803.

  28. P. Prasath and D. Silambarasan, “An experimental investigation on flexural behaviour of stainless steel fiber reinforced concrete beam elements,” in: Internat. Conf. Current Trends Eng. Technol. (July 3, 2013), IEEE, Coimbatore (2013), pp. 146–152.

  29. P. S. Song and S. Hwang, “Mechanical properties of high-strength steel fiber-reinforced concrete,” Construct. Build. Mater., 18, No. 9, 669–673 (2004).

    Article  Google Scholar 

  30. A. Orbe, R. Losada, E. Rojí, J. Cuadrado, and A. Maturana, “The prediction of bending strengths in SFRSCC using computational fluid dynamics (CFD),” Сonstruct. Build. Mater., 66, 587–596 (2004).

    Article  Google Scholar 

  31. S.-Ch. Lee, J.-H. Oh, and J.-Y. Cho, “Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers,” Materials (Basel), No. 8 (4), 1442–1458 (2015).

    Article  CAS  Google Scholar 

  32. M. Ghasemi, M. R. Ghasemi, and S. R. Mousavi, “Investigating the effects of maximum aggregate size on self-compacting steel fiber reinforced concrete fracture parameters,” Сonstruct. Build. Mater., 162, 674–682 (2017).

    Article  Google Scholar 

  33. S. Karunanithi, “Experimental studies on punching shear and impact resistance of steel fiber reinforced slag based geopolymer concrete,” Adv. Civil Eng., 1–9 (2017).

  34. C. D. Atis and O. Karahan, “Properties of steel fiber reinforced fly ash concrete,” Сonstruct. Build. Mater., 23, No. 1, 392–399 (2009).

    Article  Google Scholar 

  35. P. Ramadoss, “Combined effect of silica fume and steel fiber on the splitting tensile strength of high-strength concrete,” Internat. J. Civil Eng., 12, No. 1, 96–103 (2014).

    Google Scholar 

  36. M. Nili and A. Afroughsabet, “Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete,” Internat. J. Impact Eng., 37, No. 8, 879–886 (2010).

    Article  Google Scholar 

  37. R. V. Balendran, F. P. Zhou, A. Nadeem, and A. Y. T. Leung, “Influence of steel fibers on strength and ductility of normal and lightweight high strength concrete,” Build Environ., 37, No. 12, 1361–1367 (2002).

    Article  Google Scholar 

  38. J. Gao, “On the application of polypropylene fiber reinforced concrete in the bridge deck maintenance,” in: Internat. Conf. Computer Distr. Contr. Intellig. Environ. Monitor., Zhangjiajie, Hunan China (2012), pp. 460–464.

  39. M. Zhang, “Double-K fracture analysis on polypropylene fiber reinforced concrete beams with standard three-point bending,” in: Internat. Conf. Electric Technol. Civil Eng. (ICETCE 2011) (Apr. 22–24, 2011), Lushan (2011), pp. 242–245.

  40. H. Fathi, T. Lameie, M. Maleki, and R. Yazdani , “Simultaneous effects of fiber and glass on the mechanical properties of selfcompacting concrete,” Construct. Build. Mater., 133, 443–449 (2016).

    Article  Google Scholar 

  41. J. Wang and Ye. Zhang, “Experimental research on mechanical and working properties of non-dipping chopped basalt fiber reinforced concrete,” in: IEEE 3rd Internat. Conf. Inform. Manag., Innov. Manag. Ind. Eng., 4 (2010), pp. 635–637.

  42. W. Song and J. Yin, “Hybrid effect evaluation of steel fiber and carbon fiber on the performance of the fiber reinforced concrete,” Materials (Basel), No. 9 (8), 704 (2016).

    Article  Google Scholar 

  43. Kh. Mervat, D. R. Mailyan, P. P. Pol’skoii, and A. M. Blyagoz, “Strength and deformability of flexural elements of heavyweight concrete reinforced with glass plastic and steel,” Nov. Tekhnol., No. 4, 147–152 (2012).

    Google Scholar 

  44. Y. Liu, L. Tang, and X. Huang, “Damage behavior of steel fiber reinforced and polymer modified concrete under impact loading,” Key Eng. Mater., 543–548 (2007).

  45. S. J. Pantazopoulou and M. Zanganeh, “Triaxial tests of fiber-reinforced concrete,” J. Mater. Civil Eng., 13, No. 5, 340–348 (2001).

    Article  CAS  Google Scholar 

  46. A. Tareq, B. H. Noamana, and A. B. H. Md. Akil, “The effect of combination between crumb rubber and steel fiber on impact energy of concrete beams,” Procedia Eng., 125, 825–831 (2015).

    Article  Google Scholar 

  47. B. Paulo, A. Joaquim, and A. A. Paulo, “Fatigue bahavior of fiber-reinforced concrete in compression,” Сemconcomp Cement & Concr. Compos., 24, 211–217 (2002).

    Article  Google Scholar 

  48. W. Yin and T. C. Hsu, “Fatigue behaviour of steel fiber reinforced concrete in uniaxial and biaxial compression,” ACI Mater. J., 92, 71–81 (1995).

    Google Scholar 

  49. R. Xu, Y. Zha, J. Bai, and M. Bai, “Experimental study on steel fiber reinforced concrete columns under low cyclic,” in: Second Internat. Conf. Mech. Automation Contr. Eng. (MACE 2012) (July 15–17), Inner Mongolia, IEEE (2011), pp. 3144–3147.

  50. B. C. Paulo, J. A. Figueiras, and A. A. Paulo, “Pereira Fatigue model for steel fiber-reinforced concrete,” ICCM-12, 756–765 (1999).

  51. S. Karthik, M. Kalaivani, and P. Easwaran, “Fatigue behaviour of steel fiber reinforced concrete – a review,” Internat. Research J. Eng. Technol., 3, No. 4, 2064–2068 (2016).

    Google Scholar 

  52. Yu. V. Pukharenko, Scientific and Practical Foundations of the Formation of Structure and Properties of Fiber Concretes [in Russian], Doctoral Degree Thesis (Eng.), St.-Petersburg (2005).

  53. V. P. Sylovanyuk, R. Ya. Yukhym, А. E. Lisnichuk, and N. А. Ivantyshyn, “Computational model of the tensile strength of fiberreinforced concrete,” Fiz.-Khim. Mekh. Mater., 51, No. 3, 39–45 (2015); English translation: Mater. Sci., 51, No. 3, 340–347 (2015).

  54. D. A. Panteleev, Polyreinforced Fiber Concretes with Using Amorphous Metallic Fiber [in Russian], Candidate-Degree Thesis (Eng.), St.-Petersburg (2016).

  55. І. А. Andreev, Process of the Vibroextrusion of Fiber Concrete [in Ukrainian], NTU ”Kyiv Politekh. Inst.,” Kyiv (2016).

    Google Scholar 

  56. І. А. Andreev and O. I. Tsarenko, “Vibratory impact extrusion of fiber concrete,” Khim. Prom. Ukrainy, No. 2, 46–48 (2001).

    Google Scholar 

  57. І. А. Andreev and S. S. Valuiskova, “Fiber concrete. Improvement of the process of production of a thin layer of cement-sand solution in the course of vibroextrusion,” Khim. Prom. Ukrainy, No. 4 (111), 27–29 (2012).

    Google Scholar 

  58. І. А. Andreev and M. T. Dovzhyk, “Orientation of disperse reinforcement in the course of flow of fiber-concrete mixture in the channels of bunker of vibroextruder,” Visn. NTUU ”Kyiv Politekh. Inst.,” Ser. “Khim. Inzh., Ekol. Resursozber.,” No. 1 (3), 29–32 (2009).

  59. І. А. Andreev and V. V. Furmans’ka, “Efficiency of dispersed reinforcement in the vibroextrusion of fiber concrete,” in: Visn. NTUU ”Kyiv Politekh. Inst.,” Ser. “Khim. Inzh., Ekol. Resursozber.,” No. 1 (2008), pp. 19–22.

  60. І. А. Andreev and N. V. Poltorats’ka, “Vibroextrusion of fiber-concrete products with transverse orientation of disperse reinforcement,” Keramika: Nauka Zhyzn’, No. 4 (10), 56–63 (2010).

    Google Scholar 

  61. І. А. Andreev and N. V. Komkina, “Orientation of disperse reinforcement at the vibroextrusion of fiber concrete in a round annular channel,” Keramika: Nauka Zhyzn, No. 3 (13), 43–49 (2011).

    Google Scholar 

  62. L. G. Voronin, І. А. Andreev and N. V. Komkina, “Fiber-concrete pipes. Process of vibroextrusion formation,” Khim. Prom. Ukrainy, No. 6 (107), 38–40 (2011).

    Google Scholar 

  63. E. K. Opbul and S. S. Sedip, “Strength and crack resistance of flexural elements of dispersion reinforced concrete with high-strength reinforcement without preliminary stresses,” Vestn. Tuva Gos. Univ., Tekh. Fiz.-Mat. Nauki, No. 3, 43–54 (2014).

    Google Scholar 

  64. A. N. Kulikov, Experimental and Theoretical Investigations of the Properties of Fiber Concrete under Gradientless Stressed State in Short-Term Tests [in Russian], Author’ Abstr. Candidate-Degree Thesis (Eng.), Leningrad (1974).

  65. V. G. Khozin, A. R. Gizdatullin, and A. N. Kuklin, “Specific features of the deformation and fracture of concrete beams with composite reinforcement of different diameters,” in: Fracture Mechanics of Building Materials and Structures [in Russian] (2014), pp. 354–361.

  66. D. A. Il’in, Composite Reinforcement Based on Glass and Carbon Fibers for Concrete Structures [in Russian], Candidate-Degree Thesis (Eng.), Moscow (2017).

  67. B. Westerberg, “Some questions concerning the design of steel fiber concrete slabs on ground.” in: Workshop Proc. Nordic Miniseminar, Stockholm (2001), pp. 11–22.

  68. V. I. Morozov, Yu. V. Pukharenko, and A. O. Khehai, “Modeling of microcrack initiation in fiber concrete by the methods of fracture mechanics,” Such. Prom. Tsyv. Bud., 7, No. 3, 125–134 (2011).

    Google Scholar 

  69. A. Orbe, J. Cuadrado, R. Losada, and E. Rojí, “Framework for the design and analysis of steel fiber reinforced self-compacting concrete structures,” Constr. Build. Mater., 35, 676– 686 (2012).

    Article  Google Scholar 

  70. A. Orbe, J. Cuadrado, R. Losada, and E. Rojí, “Calibration patterns for predicting residual strengths of steel fiber reinforced concrete (SFRC),” Composites, Part B: Engineering,” 58, 408–417 (2014).

    Article  CAS  Google Scholar 

  71. M. Faifer, R. Ottoboni, S. Toscani and L. Ferrara, “An improved method for steel fiber reinforced concrete analysis,” Internat. Instrum. Measur. Technol. Conf. Proc. (May 12–16, 2012), IEEE, Graz (2012), pp. 1896–1901.

  72. M. Faifer and, R. Ottoboni, “Nondestructive testing of steel-fiber-reinforced concrete using a magnetic approach,” IEEE Trans. Instrum. Measur., 60, No. 5, 1709–1717 (2011).

    Article  Google Scholar 

  73. P. Juan-García, J. M. Torrents, R. D. López-Carreño, and S. H. P. Cavalaro, “Influence of fiber properties on the inductive method for the steel-fiber-reinforced concrete characterization,” IEEE Trans. Instrum. Measur., 65, No. 8, 1937–1944 (2016).

    Article  Google Scholar 

  74. J. Karlovšek, N. Wagner, and A. Scheuermann, “Frequency-dependant dielectric parameters of steel fiber reinforced concrete,” in: 14th Internat. Conf. Ground Penetrating Radar (GPR) (June 4–8, 2012), IEEE, Shanghai (2012) pp. 510–516.

  75. J. M. Torrents, A. Blanco, P. Pujadas, A. Aguado, P. J. García, and M. A. Sánchez, “Inductive method for assessing the amount and orientation of steel fibers in concrete,” Mater. Struct., 45, 1577–1592 (2012).

    Article  Google Scholar 

  76. M. Sanchez, I. Peña, A. Arrinda, D. de la Vega, D. Guerra, and U. Gil, “UHF antenna design for the estimation of fiber density of steel fiber reinforced concrete,” in: 9th Europ. Conf. Antennas Propag. (EuCAP) (Apr. 13–17, 2015), IEEE, Lisbon (2015), pp. 1–4.

  77. G. Roqueta, L. Jofre, J. Romeu, and S. Blanch, “Broadband propagative microwave imaging of steel fiber reinforced concrete wall structures,” IEEE Trans. Instrum. Measur., 59, No. 12, 3102–3110 (2010).

    Article  Google Scholar 

  78. G. Roqueta, J. Romeu, and L. Jofre, “Time domain reflection technique for microwave non destructive testing of steel fiber reinforced concrete,” in: IEEE Proc. Fourth Europ. Conf. Antennas Propag. (EuCAP), Barcelona (2010), pp. 1–5.

  79. M. Faifer, R. Ottoboni, and S. Toscani, “A compensated magnetic probe for steel fiber reinforced concrete monitoring,” in: IEEE Kona: SENSORS (2010), pp. 698–703.

  80. J. P. Chiverton, I. Olubisi, S. J. Barnett, and T. Parry, “Multiscale Shannon’s entropy modeling of orientation and distance in steel fiber micro-tomography data,” IEEE Trans. Image Process., 26, No. 11, 5284–5297 (2017).

    Article  Google Scholar 

  81. J. Štoller and P. Dvořák, “Field tests of high performance fiber reinforced concrete slabs: Impact of contact and distant explosions,” in: Internat. Conf Military Technol. (ICMT) (May 19–21, 2015), IEEE, Brno (2015), pp. 1–5.

  82. Yu. V. Pukharenko, V. Yu. Golubev, and A. O. Khegai, “On the assessment of crack resistance of steel fiber concrete by the ultrasonic method,” Prom. Grazhd. Stroit., No. 9, 50–51 (2009).

    Google Scholar 

  83. E. Özgür, M. Khaled, and Ç. Tahir, “Effects of silica fume and steel fibers on some mechanical properties of high-strength fiberreinforced concrete,” J. Test. Evaluat., 27, No. 6, 380–387 (1999).

    Article  Google Scholar 

  84. А. E. Andreikiv and N. V. Lisak, Acoustic Emission Methods in the Investigations of Fracture Processes [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  85. V. R. Skal’s’kyi and O. E. Andreikiv, Assessment of the Volume Damage of Materials by the Acoustic Emission Method [in Ukrainian], Vyd. Tsentr Franko LNU, Lviv (2006).

    Google Scholar 

  86. O. P. Sunak and P. O. Sunak, Assessment of the Reliability of Steel-Fiber Concrete Elements [in Ukrainian], LDTU, Luts’k (2001).

    Google Scholar 

  87. E. M. Babych and S. Ya. Drobyshynets’, Operation and Calculation of Flexural Steel-Fiber Concrete Elements [in Ukrainian], LNTU, Luts’k (2012).

    Google Scholar 

  88. O. V. Andriichuk and E. M. Babych, Steel-Fiber Concrete Nonpressure Pipes [in Ukrainian], LNTU, Luts’k (2012).

    Google Scholar 

  89. S. О. Uzhehov, О. A. Uzhehova, R. V. Pasichnyk, O. V. Andriichuk, and S. Ya. Drobyshynets’, “Calculation of steel-fiber concrete flexural elements by the strength of normal sections,” Such. Tekhnol. Met. Rozrakh. Bud., No. 3, 179–184 (2015).

    Google Scholar 

  90. DSTU-N B V.2.6-ХХ: 20ХХ. Structures of Houses and Buildings. Dispersion Reinforced Concrete Structures. Recommendations on Designing and Performance of Works [in Ukrainian], Min. Reg. Rozv. Bud. Ukrainy, Kyiv (2011).

    Google Scholar 

  91. O. V. Andriichuk and O. H. Hrechko, “Basic aspects of the calculation and designing of steel-fiber concrete structures,” Such. Tekhnol. Met. Rozrakh. Bud., No. 3, 3–10 (2015).

    Google Scholar 

  92. Deutscher Ausschuss fur Stahlbeton (DAfStb), Richtlinie Stahlfaserbeton, Entwurfstand (2008).

  93. O. E. Ahdreikiv, I. I. Luchko, and T. V. Hembara, “Method of determining bending stress intensity coefficients for cracked ferroconcrete components,” Fiz.-Khim. Mekh. Mater., No. 3, 104–110 (1992); English translation: Soviet Mater. Sci., 28, No. 3, 299–304 (1992).

  94. O. E. Andreikiv, I. I. Luchko, and T. V. Hembara, Calculation of Reinforced Concrete Beam Elements by the Methods of Fracture Mechanics [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (1993).

  95. V. P. Sylovanyuk, A. E. Lisnichuk, R. Ya. Yukhym, and N. A. Ivantyshyn, “Prediction of the strength of fibrous concrete in compression,” Fiz.-Khim. Mekh. Mater., 52, No. 3, 35–41 (2016); English translation: Mater. Sci., 52, No. 3, 330–338 (2016).

  96. V. I. Marukha, V. V. Panasyuk, and V. P. Sylovanyuk, Injection Technologies for Repair of Damaged Concrete, Springer, Netherlands (2014).

    Google Scholar 

  97. V. P. Sylovanyuk, R. Ya. Yukhym, N. A. Ivantyshyn, and A. E. Lisnichuk, “Prediction of the crack resistance of cement stone and fibrous concrete,” Fiz.-Khim. Mekh. Mater., 51, No. 4, 120–124 (2015); English translation: Mater. Sci., 51, No. 4, 570–575 (2016).

  98. S. I. Solodkyi and Yu. V. Turba, “Experimental-static modeling of the crack resistance of concretes reinforced with polypropylene fiber,” Naukovi Notatky, No. 46, 512–515 (2014).

    Google Scholar 

  99. A. G. Yur’ev, L. A. Panchenko, and I. R. Serykh, “New approaches to the formation of building structures based on carbon nanosystems,” Vestn. Shukhov BGTU, No. 3, 19–20 (2009).

    Google Scholar 

  100. V. G. Khozin, A. A. Piskunov, A. R. Gizdatullin, and A. N. Kuklin, “Adhesion of polymer-composite reinforcement with cement concrete,” Izv. KGASU, No. 1 (23), 214–220 (2013).

    Google Scholar 

  101. A. V. Benin and S. G. Semenov, “Experimental investigations of the adhesion between composite reinforcement and plane coiling with concrete,” Prom. Grazhd. Stroit., No. 9, 74–76 (2013).

    Google Scholar 

  102. A. V. Kokovtseva, A. S. Semenov, S. G. Semenov, and A. V. Benin, “Modeling of the process of drawing out of glass-plastic reinforcement from a concrete block,” in: Proc. Conf. Internat. Participation “XIII Week of Science in St.-Petersburg State Polytechnic Univ.” (2013), pp. 182–184.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to О. E. Andreikiv.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 54, No. 3, pp. 19–36, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreikiv, О.E., Skal’s’kyi, V.R., Dolins’ka, I.Y. et al. Methods for the Evaluation of Strength and Durability of Fiber-Reinforced Concretes (A Survey). Mater Sci 54, 309–325 (2018). https://doi.org/10.1007/s11003-018-0187-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-018-0187-y

Keywords

Navigation