Materials Science

, Volume 51, Issue 6, pp 821–826 | Cite as

Structure and Properties of Semifinished Sheet Products Made of an Intermetallic Refractory Alloy Based on Ti2AlNb

  • S. V. Skvortsova
  • A. A. Il’in
  • A. M. Mamonov
  • N. A. Nochovnaya
  • O. Z. Umarova

We study the influence of two-stage thermal treatment on the formation of the phase composition, structure, and mechanical properties of semifinished sheet products made of VTI-4 refractory alloy based on the Ti2AlNb intermetallic compound. It is shown that, changing the temperature of heating in the first stage of treatment and the temperature of subsequent aging, it is possible to affect the strength and plasticity characteristics of the material in broad ranges. It is demonstrated that, in order to obtain a structure guaranteeing a relative elongation of 8–12%, the temperature of the first stage of treatment must remain in the (β + α2 + O) three-phase region and the procedure of cooling down to room temperature or to the temperature of the second stage of treatment (800–850°C) should be realized together with the furnace. To get high levels of short- and long-term strength at 650°C with preservation of moderate values of plasticity (3–5%), it is necessary to perform cooling after isothermal treatment in the three-phase region in air. The subsequent procedure of aging should be carried out within the temperature range 800–850°C for 7 h.


refractory titanium ortho-alloy thermal treatment structure phase composition strength plasticity 


  1. 1.
    V. V. Antipov, “Strategy of development of titanium, magnesium, beryllium, and aluminum alloys,” Aviats. Mater. Tekhnol., No. S, 157–167 (2012).Google Scholar
  2. 2.
    A. V. Novak, N. A. Nochovnaya, and T. V. Pavlova, “State, problems, and prospects of the development of refractory titanium alloys for the components of gas-turbine engines,” Trudy VIAM (2013), No. 3 (electronic journal),
  3. 3.
    B. A. Kolachev, Yu. S. Eliseev, A. G. Bratukhin, and V. D. Talalaev, Titanium Alloys in Structures in the Production of Aircraft Engines and Aerospace Equipment [in Russian], Moscow Aviation Institute, Moscow (2001).Google Scholar
  4. 4.
    E. Schwaighofer, H. Clemens, S. Mayer, J. Lindemann, J. Klose, W. Smarsly, and V. Guther, “Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ -TiAl based alloy,” Intermetallics, 44, 128–140 (2014).Google Scholar
  5. 5.
    A. V. Kuznetsov, G. S. D’yakonov, G. D. Shaisultanov, V. S. Sokolovsky, and G. A. Salishchev, “Influence of the temperature of deformation on the microstructure and mechanical behavior of TNM-B1 cast intermetallic alloy based on titanium aluminide γ -TiAl,” Nauch. Vedom. Belgorod. Gos. Univ. Ser. Mat. Fiz., 33, No. 26, 132–141 (2013).Google Scholar
  6. 6.
    M. Paninski, A. Drevermann, G. J. Schmitz, M. Palm, F. Stein, M. Heil-Maier, N. Engberding, H. Saage, and D. Sturm, “Casting and properties of Al-rich Ti–Al alloys,” in: Ti-2007 Science and Technology: Proc. of the 11th World Conf. on Titanium (JIMIC5) (Kyoto, June 3–7, 2007), Vol. 1, Japan Institute of Metals, Kyoto (2007), pp. 1059–1062.Google Scholar
  7. 7.
    V. Imayev, T. Oleneva, R. Imayev, H.-J. Christ, and H.-J. Fecht, “Microstructure and mechanical properties of low and heavy alloyed γ -TiAl + α2 -Ti3Al based alloys subjected to different treatments,” Intermetallics, 26, 91–97 (2012).CrossRefGoogle Scholar
  8. 8.
    V. G. Antashev, N. A. Nochovnaya, A. A. Shiryaev, and A. Yu. Izotova, “Prospects of the development of new titanium alloys,” Vestn. MGTU Im. N. E. Baumana. Ser. Mashinostroenie, No. S2, 60–67 (2011).Google Scholar
  9. 9.
    E. N. Kablov, “Strategic directions of the development of materials and technologies of their processing for up to 2030,” Aviats. Mater. Tekhnol., No. S, 7–17 (2012).Google Scholar
  10. 10.
    A. A. Popov, A. G. Illarionov, S. V. Grib, S. L. Demakov, M. S. Karabanalov, and O. A. Elkina, “Phase and structural transformations in the alloy based on the orthorhombic titanium aluminide,” Fiz. Met. Metalloved., 106, No. 4, 414–425 (2008).Google Scholar
  11. 11.
    N. A. Nochovnaya, E. B. Alekseev, K. K. Yasinskii, and A. S. Kochetkov, “Specific features of melting and the procedures of preparation of ingots of intermetallic titanium alloys with elevated contents of niobium,” Vestn. MGTU Im. N. E. Baumana. Ser. Mashinostroenie, No. S2, 53–59 (2011).Google Scholar
  12. 12.
    N. A. Nochovnaya, S. V. Skvortsova, D. S. Anishchuk, E. B. Alekseeva, P. V. Panin, and O. Z. Umarova, “Development of the technology of experimental refractory alloy based on the Ti2AlNb intermetallic compound,” Titan, No. 4, 33–38 (2013).Google Scholar
  13. 13.
    E. B. Alekseev, N. A. Nochovnaya, S. V. Skvortsova, P. V. Panin, and O. Z. Umarova, “Determination of the technological parameters of deformation for an experimental refractory alloy based on the Ti2AlNb intermetallic compound,” Titan, No. 2, 36–41 (2014).Google Scholar
  14. 14.
    V. M. Vozdvizhenskii, A. A. Zhukov, A. D. Postnova, and M. V. Vozdvizhenskaya, Alloys of Nonferrous Metals for the Aeronautical Equipment [in Russian], Rybinsk State Aviation Technical University, Rybinsk (2002).Google Scholar
  15. 15.
    S. V. Skvortsova, O. Z. Umarova, I. A. Grushin, E. O. Agarkova, and D. S. Anishchuk, “Influence of temperature on the phase composition and structure of VTI-4 intermetallic alloy,” Titan, No. 2, 11–15 (2015).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. V. Skvortsova
    • 1
  • A. A. Il’in
    • 1
  • A. M. Mamonov
    • 1
  • N. A. Nochovnaya
    • 1
  • O. Z. Umarova
    • 1
  1. 1.Moscow Aviation Institute” (MAI; National Research University) Federal State Budget Educational Institution of Higher EducationMoscowRussia

Personalised recommendations