Materials Science

, Volume 50, Issue 4, pp 488–495 | Cite as

Determination of the Local Strains Near Stress Concentrators by the Digital Image Correlation Technique

  • Ya. L. Ivanyts’kyi
  • Yu. V. Mol’kov
  • P. S. Kun’
  • T. M. Lenkovs’kyi
  • M. Wójtowicz

We analyze the specific features of determination of the local strains in materials in the vicinity of stress concentrators of different radii by the digital image correlation method. The dependences of the critical local strains on the spacing used for their measuring in smooth specimens and specimens with stress concentrators and fatigue cracks are established. Recommendations concerning the choice of the optimal spacing for measuring local strains are presented. The stress-strain diagrams of 65G steel are constructed on the “true-stress–local strain” coordinates.


local strains stress concentration digital image correlation spacing for strain measurements strain distribution true stress–strain diagram plastic strain carbon steel 


  1. 1.
    S. E. Kovchik and E. M. Morozov, Characteristics of Short-Term Crack Resistance of Materials and Methods for Their Determination, in: V. V. Panasyuk, Fracture Mechanics and Strength of Materials [in Russian], Vol. 4, Naukova Dumka, Kiev (1988).Google Scholar
  2. 2.
    V. V, Panasyuk, Mechanics of Quasibrittle Fracture of Materials [in Russian], Naukova Dumka, Kiev (1991).Google Scholar
  3. 3.
    S. I. Gubkin, Plastic Deformation of Metals, Vol. 1: Physicomechanical Foundations of Plastic Deformation [in Russian], Metallurgizdat, Moscow (1961).Google Scholar
  4. 4.
    G. S. Pisarenko and V. A. Strizhalo, Experimental Methods in the Mechanics of Deformed Solids [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  5. 5.
    T. Chu, W. Ranson, and M. Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech., 25(3), 232–244 (1985).CrossRefGoogle Scholar
  6. 6.
    M. A. Sutton, M. Cheng, W. H Peters, et al., “Application of an optimized digital correlation method to planar deformation analysis,” Image Vision Comput., 4, No. 3, 143–150 (1986).CrossRefGoogle Scholar
  7. 7.
    B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol., 20(6), 062001–062007 (2009).CrossRefGoogle Scholar
  8. 8.
    Yu. V. Mol’kov, “Application of the method of digital image correlation to the construction of stress–strain diagrams,” Fiz.-Khim. Mekh. Mater., 48, No. 6, 136–140 (2012); English translation: Mater. Sci., 48, No. 6, 832–837 (2013).Google Scholar
  9. 9.
    GOST 1497-84 /ST SÉV 471-77. Metals. Tensile Testing Methods [in Russian], Izd. Standartov, Moscow (1985).Google Scholar
  10. 10.
    GOST 11701-84 / ST SÉV 471-77. Metals. Tensile Testing Methods. Thin Sheets and Ribbons [in Russian], Izd. Standartov, Moscow (1985).Google Scholar
  11. 11.
    Ya. B. Fridman, Mechanical Properties of Metals, Vol. 1: Deformation and Fracture [in Russian], Mashinostroenie, Moscow (1974).Google Scholar
  12. 12.
    M. L. Bernshtein and V. A. Zaimovskii, Structure and Mechanical Properties of Metals [in Russian], Metallurgiya, Moscow (1970).Google Scholar
  13. 13.
    Mechanical Testing Methods for Metals. Determination of the Characteristics of Crack Resistance under Cyclic Loading. Methodical Recommendations [in Russian], International Center of Scientific and Engineering Information, Moscow (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ya. L. Ivanyts’kyi
    • 1
  • Yu. V. Mol’kov
    • 1
  • P. S. Kun’
    • 1
  • T. M. Lenkovs’kyi
    • 1
  • M. Wójtowicz
    • 2
  1. 1.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine
  2. 2.University of Technology and HumanitiesRadomPoland

Personalised recommendations