Materials Science

, Volume 50, Issue 3, pp 415–420 | Cite as

Influence of the Diffusion Saturation with Oxygen on the Durability and Long-Term Static Strength of Titanium Alloys

  • V. M. Fedirko
  • O. H. Luk’yanenko
  • V. S. Trush

We study the influence of gradient hardening of the surface layer of the metal with an interstitial impurity (oxygen) on the durability of VT1-0, VT5, PT-7M, and OT4-1 titanium alloys under the conditions of pure and rotating bending, cyclic tension, and long-term static loading (up to 1000 h).


titanium alloys subsurface layer solid-solution hardening fatigue fatigue strength 


  1. 1.
    A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, and Properties. A Handbook [in Russian], VILS-MATI, Moscow (2009).Google Scholar
  2. 2.
    G. Lutjering and J. C. Williams, Titanium, Springer, Berlin (2007).Google Scholar
  3. 3.
    Y. Oshida, Bioscience and Bioengineering of Titanium Materials, Elsevier, Amsterdam (2007).Google Scholar
  4. 4.
    U. Zwicker, Titan und Titanlegierungen, Springer, Berlin (1974).CrossRefGoogle Scholar
  5. 5.
    H. Guleryuz and H. Cimenoglu, “Surface modification of a Ti–6Al–4V alloy by thermal oxidation,” Surface Coat. Technol., No. 192, 164–170 (2005).Google Scholar
  6. 6.
    G. M. Shelenkov, V.E. Blashchuk, R.K. Melekhov, et al., Production and Operation of Equipment Made of Titanium [in Russian], Tekhnika, Kiev (1984).Google Scholar
  7. 7.
    B. A. Kolachev, V. V. Sadkov, V. D. Talalaev, et al., Vacuum Annealing of Titanium Structures [in Russian], Mashinostroenie, Moscow (1991).Google Scholar
  8. 8.
    C. Leyens and P. Manfred, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Berlin (2003).CrossRefGoogle Scholar
  9. 9.
    A. B. Kolomenskii, B. A. Kolachev, A. V. Degtyarev, and A. N. Roshchupkin, “Effect of the depth of removal of the gas-saturated layer on repeated static endurance and activity of OT4 and VT6ch titanium alloys,” Fiz.-Khim. Mekh. Mater., 27, No. 3, 25–28 (1991); English translation: Mater. Sci., 27, No. 3, 533–535 (1991).Google Scholar
  10. 10.
    A. B. Kolomenskii, A Procedure of Surface Processing of the Products Made of Titanium and Titanium Alloys [in Russian], Patent of the Russian Federation No. 2205890С2, MPK7 C22F1/18, Applic. 12.09.01, Publ. 10.06.03, Bull. No. 6.Google Scholar
  11. 11.
    A. V. Peshkov, D. N. Balbekov, V. R. Petrenko, V. F. Selivanov, and V. V. Peshkov, A Procedure of Surface Hardening of the Products Made of Titanium and Titanium Alloys [in Russian], Patent of the Russian Federation No. 2318077С1, MPK6 С23С 8/06, No. 2006124054/02, Applic. 04.07.06, Publ. 27.02.08, Bull. No. 8.Google Scholar
  12. 12.
    O. P. Solonina and O. A. Nikishov, “Enhancement of fatigue strength and properties of products made of titanium alloys,” in: Structure and Properties of Titanium Alloys [in Russian], VIAM, Moscow (1972), pp. 38–42.Google Scholar
  13. 13.
    O. P. Ostash and V. M. Fedirko (editors), Strength and Durability of Aviation Materials and Structural Elements [in Ukrainian], Spolom, Lviv (2007), V. V. Panasyuk (editor), Fracture Mechanics and Strength of Materials, Vol. 9.Google Scholar
  14. 14.
    A. A. Lukin, A. K. Tarkhanov, O. A. Lukin, and V. A. Glukhov, “Improvement of the technology of vacuum annealing of titanium alloys,” Nauch. Vest. Voron. Gos. Arkh.-Str. Univ. Ser. Fiz.-Khim. Probl. Vys. Tekh. Str. Mat., Issue 6, 45–49 (2013).Google Scholar
  15. 15.
    V. M. Fedirko, A. T. Pichugin, O. H. Luk’yanenko, and Z. O. Siryk, “Evaluation of the serviceability of products made of titanium alloys with gas-saturated layers,” Fiz.-Khim. Mekh. Mater., 32, No. 6, 49–54 (1996); English translation: Mater. Sci., 32, No. 6, 688–693 (1996).CrossRefGoogle Scholar
  16. 16.
    A. T. Pichugin, V. M. Fedirko, O. H. Luk’yanenko, and V. S. Onuferko, “Endurance of VT1-0 titanium alloy subjected to solid-solution surface hardening,” Fiz.-Khim. Mekh. Mater., 41, No. 3, 119–122 (2005); English translation: Mater. Sci., 41, No. 3, 418–422 (2005).CrossRefGoogle Scholar
  17. 17.
    G. G. Maksimovich, B. M. Savchin, S. M. Kudlak, and E. M. Lyutyi, Micromachines for Testing Materials for Low-Cycle Fatigue by the Method of Pure Bending [in Russian], Preprint No. 6, Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (1977).Google Scholar
  18. 18.
    G. G. Maksimovich, Micromechanical Studies of the Properties of Metals and Alloys [in Russian], Naukova Dumka, Kiev (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. M. Fedirko
    • 1
  • O. H. Luk’yanenko
    • 1
  • V. S. Trush
    • 1
  1. 1.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations