Materials Science

, Volume 50, Issue 1, pp 55–61 | Cite as

Fatigue Properties of Thermally Deformed Alloys of the TI–SI System

  • S. A. Firstov
  • О. P. Ostash
  • Yu. F. Lugovskoi
  • N. N. Kuz’menko
  • L. D. Kulak
  • S. A. Spiridonov

We study the mechanical properties of the well-known VT1 and VT6 titanium alloys and new deformed alloys of the Ti–Si system with silicon contents of 0.1–6%. It is shown that, as the amount of silicon increases, the modulus of elasticity, the fatigue limit of smooth specimens, and the calculated fatigue threshold of the specimen containing a crack determined according to the parameters of fatigue fracture increase. It is shown that the mechanical characteristics of alloys of the Ti–Si system exceed the characteristics established for extensively used VT6 alloy.


titanium alloys silicon fatigue limit Young’s modulus cyclic crack resistance 


  1. 1.
    S. G. Glazunov and V. N. Moiseev, Structural Titanium Alloys [in Russian], Metallurgiya, Moscow (1974).Google Scholar
  2. 2.
    B. A. Kolachev, Physical Metallurgy of Titanium [in Russian], Metallurgiya, Moscow (1976).Google Scholar
  3. 3.
    V. N. Gridnev, О. M. Ivasishin, and S. P. Oshkaderov, Physical Fundamentals of High-Speed Thermal Hardening of Titanium Alloys [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  4. 4.
    F. W. Crossman and A. S. Yue, “Unidirectional solidified Ti–TiB and Ti–Ti5Si3 eutectic composites,” Met. Trans., 2, No. 6, 1545–1555 (1971).Google Scholar
  5. 5.
    V. I. Mazur, S. V. Kapustnikova, I. Ya. Dem’yanets, et al., “Influence of chemical composition on the microstructure, phase composition, and mechanical properties of alloys for thermally stressed components of internal combustion engines,” Dvigatelestroenie, No. 2, 32−33 (1989).Google Scholar
  6. 6.
    Yu. N. Taran, V. I. Mazur, S. V. Kapustnikova, et al., “New titanium-based cermets,” Met. Lit’e Ukr., No. 11−12, 42–46 (1999).Google Scholar
  7. 7.
    S. O. Firstov, “New generation of titanium-based materials,” in: V. V. Panasyuk (editor), Fracture Mechanics of Materials and Strength of Structures [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (2004), pp. 609–616.Google Scholar
  8. 8.
    S. A. Firstov, S. V. Tkachenko, and N. N. Kuz’menko, “Titanium ‘cast irons’ and titanium ‘steels,’” Metalloved. Term. Obrab. Met., No. 1, 14–20 (2009).Google Scholar
  9. 9.
    M. M. Kuz’menko, Development of Thermally Deformed Titanium Structural Composite of the Ti–Si–(Al, Zr) System Intended for Application within the Temperature Range 20–700°С [in Ukrainian], Author’s Abstract of the Candidate Degree Thesis (Engineering), Institute for Problems in Materials Science, Ukrainian National Academy of Sciences, Kyiv (2006).Google Scholar
  10. 10.
    M. M. Kuz’menko, “Influence of plastic deformation on the structure and mechanical properties of alloys of the Ti–Si system,” Sovr. Probl. Fiz. Materialoved., Issue 16, 118–121 (2007).Google Scholar
  11. 11.
    M. M. Kuz'menko, “Structure and mechanical properties of cast alloys of the Ti–Si system,” Fiz.-Khim. Mekh. Mater., 44, No. 1, 45–48 (2008); English translation : Mater. Sci., 44, No. 1, 49–53 (2008).CrossRefGoogle Scholar
  12. 12.
    V. A. Kuz’menko, Acoustic and Ultrasonic Vibrations in the Dynamic Testing of Materials [in Russian], Academy of Sciences of the Ukr. SSR, Kiev (1963).Google Scholar
  13. 13.
    Yu. F. Lugovskoi, “Methods of fatigue testing of composite materials obtained by electron-beam evaporation by bending,” Probl. Spetsélektrometall., No. 4, 61–65 (1987).Google Scholar
  14. 14.
    A. S. Tetelman and A. J. MacEvily, Fracture of Structural Materials, Wiley, New York (1967).Google Scholar
  15. 15.
    M. Ninomi, “Fatigue characteristics of metallic biomaterials,” Int. J. Fatigue, 29, 992–1000 (2007).CrossRefGoogle Scholar
  16. 16.
    K. J. Miller, “Metal fatigue—past, current, and future,” Proc. Inst. Mech. Eng., 205(C5), 291–304 (1991).Google Scholar
  17. 17.
    O. P. Ostash and V. V. Panasyuk, “On the theory of initiation and growth of fatigue cracks,” Fiz.-Khim. Mekh. Mater., 24, No. 1, 13–21 (1988).Google Scholar
  18. 18.
    O. P. Ostash, V. V. Panasyuk, and Ye. M. Kostyk, “A phenomenological model of fatigue macrocrack initiation near stress concentrators,” Fatigue. Fract. Eng. Mater. Struct., 22, No. 2, 161–172 (1999).CrossRefGoogle Scholar
  19. 19.
    O. P. Ostash and V. V. Panasyuk, “Fatigue process zone at notches,” Int. J. Fatigue, 23, No. 7, 627–636 (2001).CrossRefGoogle Scholar
  20. 20.
    G. Pluvinage, Z. Azari, N. Kadi, et al., “Effect of ferritic microstructure on local damage zone distance associated with fracture near notch,” Theor. Appl. Fract. Mech., 31, 149–156 (1999).CrossRefGoogle Scholar
  21. 21.
    А. Ivasyshyn, B. Vasyliv, О. Ostash, et al., “Increase in the high-temperature strength and cyclic crack resistance of a cermet alloy of the Ti–Si–Al–Zr system” in: V. V. Panasyuk (editor), Fracture Mechanics of Materials and Strength of Structures [in Ukrainian], Physicomechanical Institute, Lviv (2004), pp. 831–838.Google Scholar
  22. 22.
    O. P. Ostash, A. D. Ivasyshyn, L. D. Kulak, and M. M. Kuz'menko, “Influence of structure on the high-temperature cyclic crack resistance of a Ti–8Al–1.4Si–2.2Zr alloy,” Fiz.-Khim. Mekh. Mater., 44, No. 3, 50–56 (2008); English translation : Mater. Sci., 44, No. 3, 360–367 (2008).CrossRefGoogle Scholar
  23. 23.
    V. T. Troshchenko and V. I. Dragan, “Initiation and development of fatigue cracks in structural steels,” Publ. Techn. Univ. Heavy Ind. Ser. C, 39, 211–224 (1983).Google Scholar
  24. 24.
    O. P. Ostash, “New approaches in fatigue fracture mechanics,” Fiz.-Khim. Mekh. Mater., 42, No. 1, 13–25 (2006); English translation: Mater. Sci., 42, No. 1, 360–367 (2006)CrossRefGoogle Scholar
  25. 25.
    M. Klesnil and P. Lukas, Fatigue of Metallic Materials, Academia, Prague (1980).Google Scholar
  26. 26.
    O. P. Ostash, A. D. Ivasyshyn, B. D. Vasyliv, et al., "Influence of the structure and asymmetry of loading cycles on the cyclic crack resistance of Ti–Si composites,” Fiz.-Khim. Mekh. Mater., 38, No. 1, 46–50 (2002); English translation : Mater. Sci., 38, No. 1, 55–61 (2002).CrossRefGoogle Scholar
  27. 27.
    RD 50-345-82. Strength Analysis and Tests. Methods for Mechanical Testing of Metals. Determination of the Characteristics of Crack Resistance (Fracture Toughness) under Cyclic Loading [in Russian], Izd. Standartov, Moscow (1983).Google Scholar
  28. 28.
    V. T. Troshchenko, “Investigation of the threshold stress intensity factors of materials under cyclic loading. Part 2. Prediction of fatigue limits and the propagation of fatigue cracks,” Probl. Prochn., No. 5, 5–11 (1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. A. Firstov
    • 1
  • О. P. Ostash
    • 2
  • Yu. F. Lugovskoi
    • 1
  • N. N. Kuz’menko
    • 1
  • L. D. Kulak
    • 1
  • S. A. Spiridonov
    • 1
  1. 1.Frantsevich Institute for Problems in Materials ScienceUkrainian National Academy of SciencesKyivUkraine
  2. 2.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations