Materials Science

, Volume 49, Issue 2, pp 243–251 | Cite as

Stressed State of a Hollow Conducting Sphere under the Electromagnetic Action in the Decaying Sinusoid Mode

  • R. S. Musii

We formulate a dynamic centrally symmetric problem of thermomechanics for a hollow conducting sphere subjected to a homogeneous nonstationary electromagnetic action in the decaying sinusoid mode. We obtain the solution of this problem by using the cubic approximations of the azimuthal component of the vector of magnetic field and the radial component of the stress tensor in the radial coordinate. We also perform the numerical analysis of the thermal stressed state and the load-carrying capacity of nonferromagnetic spheres under the indicated conditions.


dynamic centrally symmetric problem of thermomechanics conducting sphere electromagnetic action decaying sinusoid mode resonance frequency load-carrying capacity 


  1. 1.
    V. G. Bazhenov and M. V. Petrov, “On the application of the magnetic pulsed technique of deformation for the investigation of the viscoplastic characteristics of materials,” in: Applied Problems of Strength and Plasticity. Methods for the Solution of Problems of Elasticity and Plasticity [in Russian], Issue 37 (1980), pp. 18–25.Google Scholar
  2. 2.
    Yu. V. Batygin, V. I. Lavinskii, and L. T. Khimenko, Pulsed Magnetic Fields for Advanced Technologies [in Russian], MOST-Tornado, Kharkov (2003).Google Scholar
  3. 3.
    Knoepfel, Pulsed High Magnetic Fields, North-Holland, Amsterdam (1970).Google Scholar
  4. 4.
    G. S. Pisarenko and A A. Lebedev, Resistance of Materials to Deformation and Fracture in Complex Stressed State [in Russian], Naukova Dumka, Kiev (1969).Google Scholar
  5. 5.
    F. Herlach (editor), Strong and Superstrong Magnetic Fields and Their Applications, Springer, Berlin (1985).Google Scholar
  6. 6.
    F. O. Moon, “Problem in magneto-solid mechanics,” Mechanics Today, 4, 307–309 (1978).Google Scholar
  7. 7.
    O. R. Hachkevych, R. S. Musii, and D. V. Tarlakovs’kyi, Thermomechanics of Nonferromagnetic Conducting Bodies under the Action of Pulsed Electromagnetic Fields with Amplitude Modulation [in Ukrainian], Spolom, Lviv (2011).Google Scholar
  8. 8.
    I. E. Tamm, Foundations of the Theory of Electricity [in Russian], Nauka, Moscow (1967).Google Scholar
  9. 9.
    V. F. Gribanov and N. G. Panichkin, Coupled and Dynamic Problems of Thermoelasticity [in Russian], Mashinostroenie, Moscow (1984).Google Scholar
  10. 10.
    A. D. Kovalenko, Foundations of Thermoelasticity [in Russian], Naukova Dumka, Kiev (1970).Google Scholar
  11. 11.
    W. Nowacki, Teoria Sprezystosci, PWN, Warszawa (1970).Google Scholar
  12. 12.
    Ya. S. Podstrigach and Yu. M. Kolyano, Generalized Thermomechanics [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  13. 13.
    A. R. Gachkevich, R. S. Musii, and G. B. Stasyuk, “Thermomechanical state of a hollow conducting sphere under pulsed electromagnetic action,” Teor. Prikl. Mekh., Issue 40 (2005), pp. 9–17.Google Scholar
  14. 14.
    R. S. Musii, Dynamic Problems of the Thermomechanics of Conducting Bodies of Canonical Shapes [in Ukrainian], Rastr-7, Lviv (2010).Google Scholar
  15. 15.
    R. S. Musii, “Stressed state of a conducting sphere under the electromagnetic action with pulsed modulating signal,” Fiz.-Khim. Mekh. Mater., 46, No. 6, 76–81 (2010); English translation: Mater. Sci., 46, No. 6, 800–807 (2010).Google Scholar
  16. 16.
    Ya. I. Burak, O. R. Hachkevych, and R. S. Musii, “Thermoelasticity of conducting bodies under the action of pulsed electromagnetic fields,” Mat. Metody Fiz.-Mekh. Polya, 49, No. 1, 75–84 (2006).Google Scholar
  17. 17.
    R. S. Musii, “Formulation of boundary-value problems of the thermomechanics of conducting bodies of canonical shapes,” Fiz.-Khim. Mekh. Mater., 44, No. 5, 126–127 (2008); English translation: Mater. Sci., 44, No. 5, 735–737 (2008).Google Scholar
  18. 18.
    O. R. Hachkevych and R. S. Musii, “Bearing ability of conducting elements of the canonical shape under the action of electromagnetic pulses,” Fiz.-Khim. Mekh. Mater., 46, No. 4, 92–97 (2010); English translation: Mater. Sci., 46, No. 4, 536–542 (2010).Google Scholar
  19. 19.
    R. S. Musii, “Fundamental equation and solution of a centrally symmetric dynamic problem of thermoelasticity for a sphere in stresses,” Fiz.-Khim. Mekh. Mater., 38, No. 1, 117–118 (2002); English translation: Mater. Sci., 38, No. 1, 151–154 (2002).Google Scholar
  20. 20.
    Ya. S. Podstrigach, Ya. I. Burak, A. R. Gachkevich, and L. V. Chernyavskaya, Thermoelasticity of Conducting Bodies [in Russian], Naukova Dumka, Kiev (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.“L’vivs’ka Politekhnika” National UniversityLvivUkraine

Personalised recommendations