Materials Science

, Volume 49, Issue 2, pp 135–144 | Cite as

Influence of Reducing and Oxidizing Media on the Physicomechanical Properties of ScCeSZ–NiO and YSZ–NiO Ceramics

  • B. D. Vasyliv
  • V. Ya. Podhurs’ka
  • O. P. Ostash
  • О. D. Vasyl’ev
  • E. M. Brodnikovs’kyi

We reveal the positive influence of cyclic redox treatment (redox cycling) at 600°C on the strength and electric conductivity of anode substrates for ceramic fuel cells. As a result of this treatment of ceramic anodes of the 10Sc1CeSZ–50NiО and 8YSZ–50NiO systems, which includes the stages of heating up to a fixed temperature in a vacuum or in inert gases, reduction of the preheated material in hydrogen-containing atmospheres, degassing, and oxidation in air at the same temperature, we formed structures guaranteeing the improved physicomechanical properties (strength and electric conductivity) of these products.


ceramic fuel cell anode substrate ZrO2–NiO ceramics redox treatment electric conductivity strength 


  1. 1.
    D. Sarantaridis and A. Atkinson, “Redox cycling of Ni-based solid oxide fuel cell anodes: a review,” Fuel Cells, No. 3, 246–258 (2007).Google Scholar
  2. 2.
    M. Ettler, H. Timmermann, J. Malzbender, et al., “Durability of Ni anodes during reoxidation cycles,” J. Power Sources, 195, 5452–5467 (2010).CrossRefGoogle Scholar
  3. 3.
    E. Brodnikovs’kyi, B. Vasyliv, O. Ostash, and O. Vasyl’ev, “Mechanical behavior of Ni–ZrO2 anodes for ceramic fuel cells,” in: V. V. Panasyuk (editor), Fracture Mechanics of Materials and Strength of Structures [in Ukrainian], Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (2009), pp. 515–520.Google Scholar
  4. 4.
    O. Ostash, O. Vasyl’ev, B. Vasyliv, et al., “Influence of hydrogen-containing media on the physicomechanical properties of materials of fuel cells,” in: V. V. Panasyuk (editor), Fracture Mechanics of Materials and Strength of Structures [in Ukrainian], Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (2009), pp. 623–630.Google Scholar
  5. 5.
    B. D. Vasyliv, “A procedure for the investigation of mechanical and physical properties of ceramics under the conditions of biaxial bending of a disk specimen according to the ring–ring scheme,” Fiz.-Khim. Mekh. Mater., 45, No. 4, 89–92 (2009); English translation: Mater. Sci., 45, No. 4, 571–575 (2009).CrossRefGoogle Scholar
  6. 6.
    W. Fischer, J. Malzbender, G. Blass, and R. W. Steinbrech, “Residual stresses in planar solid oxide fuel cells,” J. Power Sources, 150, 73–77 (2005).CrossRefGoogle Scholar
  7. 7.
    Y. B. Matus, L. C. De Jonghe, C. P. Jacobson, and S. J. Visco, “Metal-supported solid oxide fuel cell membranes for rapid thermal cycling,” Solid State Ionics, 176, 443–449 (2005).CrossRefGoogle Scholar
  8. 8.
    O. P. Ostash, B. D. Vasyliv, V. Ya. Podhurs’ka, et al., “Optimization of the properties of 10Sc1CeSZ–NiO composite by the redox treatment,” Fiz.-Khim. Mekh. Mater., 46, No. 5, 76–81 (2010); English translation: Mater. Sci., 46, No. 5, 653–658 (2011).CrossRefGoogle Scholar
  9. 9.
    B. D. Vasyliv, O. P. Ostash, V. Ya. Podhurs’ka, and O. D. Vasyl’ev, Method of Treatment of NiO-Containing Anodes of a Solid Oxide Fuel Cell [in Ukrainian], Patent of Ukraine No. 78992, Published on 10.04.13, Bulletin No. 7.Google Scholar
  10. 10.
    M. Ettler, G. Blaβ, and N. H. Menzler, “Characterization of Ni–YSZ-cermets with respect to redox stability,” Fuel Cells, No. 5, 349–355 (2007).Google Scholar
  11. 11.
    Y. Zhang, B. Liu, B. Tu, et al., “Understanding of redox behavior of Ni–YSZ cermets,” Solid State Ionics, 180, 1580–1586 (2009).CrossRefGoogle Scholar
  12. 12.
    A. Faes, A. Nakajo, A. Hessler-Wyser, et al., “Redox study of anode-supported solid oxide fuel cell,” J. Power Sources, 193, 55–64 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Faes, H. L. Frandsen, M. Pihlatie, et al., “Curvature and strength of Ni–YSZ solid oxide half-cells after redox treatments,” J. Fuel Cell Sci. Technol., 7, 1–7 (2010).CrossRefGoogle Scholar
  14. 14.
    V. Vedarsi, J. L. Young, and V. I. Birss, “A possible solution to the mechanical degradation of Ni-yttria stabilized zirconia anode-supported solid oxide fuel cells due to redox cycling,” J. Power Sources, 195, 5534–5542 (2010).CrossRefGoogle Scholar
  15. 15.
    D. Waldbillig, A. Wood, and D. G. Ivey, “Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes,” J. Power Sources, 145, 206–215 (2005).CrossRefGoogle Scholar
  16. 16.
    Y. Wang, M. E. Walter, K. Sabolsky, et al., “Effects of powder sizes and reduction parameters on the strength of Ni–YSZ anodes,” Solid State Ionics, 177, 1517–1527 (2006).CrossRefGoogle Scholar
  17. 17.
    M. Radovic and E. Lara-Curzio, “Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen,” Acta Mater., 52, 5747–5756 (2004).CrossRefGoogle Scholar
  18. 18.
    L. J. Van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Rep., 13, 1–9 (1958).Google Scholar
  19. 19.
    B. D. Vasyliv, “Improvement of the electric conductivity of the material of anode in a fuel cell by the cyclic redox thermal treatment,” Fiz.-Khim. Mekh. Mater., 46, No. 2, 117–120 (2010); English translation: Mater. Sci., 46, No. 2, 260–264 (2010).CrossRefGoogle Scholar
  20. 20.
    J. W. Fergus, R. Hui, X. Li, et al. (editors), Solid Oxide Fuel Cells. Materials Properties and Performance, CRC Press (2009).Google Scholar
  21. 21.
    Y. Zhang, B. Liu, B. Tu, et al., “Redox cycling of Ni–YSZ anode investigated by TPR technique,” Solid State Ionics, 176, 2193–2199 (2005).CrossRefGoogle Scholar
  22. 22.
    H. J. Goldschmidt, Interstitial Alloys, Plenum Press, New York (1967).Google Scholar
  23. 23.
    R. M. C. Clemmer and S. F. Corbin, “The influence of pore and Ni morphology on the electrical conductivity of porous Ni/YSZ composite anodes for use in solid oxide fuel cell applications,” Solid State Ionics, 180, 721–730 (2009).CrossRefGoogle Scholar
  24. 24.
    J. H. Yu, G. W. Park, S. Lee, and S. K. Woo, “Microstructural effects on the electrical and mechanical properties of Ni–YSZ cermet for SOFC anode,” J. Power Sources, 163, 926–932 (2007).CrossRefGoogle Scholar
  25. 25.
    S. Mosch, N. Trofimenko, M. Kusnezoff, et al., “Performance and stability of SOFC anode prepared by co-precipitation,” Solid State Ionics, 179, 1606–1610 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • B. D. Vasyliv
    • 1
  • V. Ya. Podhurs’ka
    • 1
  • O. P. Ostash
    • 1
  • О. D. Vasyl’ev
    • 2
  • E. M. Brodnikovs’kyi
    • 2
  1. 1.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine
  2. 2.Frantsevych Institute for Problems in Materials ScienceUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations