Skip to main content
Log in

Influence of the components of microstructure on the static crack resistance of 13KHMF steel

  • Published:
Materials Science Aims and scope

By using the Ritchie–Knott–Rice criterion of local fracture, we analyze the conditions of initiation and propagation of microcracks in 13KhMF ferritic steel with various microstructures. The probability of fracture by transgranular cleavage for a given level of stresses σ yy in the tests for static crack resistance is estimated with regard for the grain sizes, the presence of carbides, and their dispersion. For steels with various microstructures, we determine the critical stresses σ C1.0 and critical lengths r C upon the attainment of which the material fails according to the mechanism of transgranular cleavage with probability P f =1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E. I. Krutasova, Reliability of the Metal of Power-Generating Equipment [in Russian], Énergoizdat, Moscow (1981).

    Google Scholar 

  2. A. Hernas and J. Dobrzański, Trwałość and Niszczenie Elementów Kotłów and Turbin Parowych, WPŚ, Gliwice (2003).

    Google Scholar 

  3. I. R. Dzioba, “Properties of 13KhMF steel after operation and degradation under the laboratory conditions,” Mater. Sci., 46, No. 3, 357–364 (2010).

    Article  CAS  Google Scholar 

  4. T. Stakhiv, I. Dzioba, B. Lonyuk, and O. Student, “Structural degradation of heat-resistant steels and its influence on the parameters of crack resistance,” Fiz.-Khim. Mekh. Mater., Special Issue, No. 3, 67–72 (2002).

  5. O. M. Romaniv, A. N. Tkach, I. R. Dzioba, V. M. Siminkovich, and A. A. Islamov, “Effect of long-term thermomechanical treatment on the crack resistance of 12Kh1MF steel,” Mater. Sci., 25, No. 2, 202–208 (1989).

    Article  Google Scholar 

  6. O. M. Romaniv, H. M. Nykyforchyn, I. R. Dzioba, O. Z. Student, and B. P. Lonyuk, “Effect of in-service damage of 12Kh1MF steam-pipe steel on its crack-resistance characteristics,” Mater. Sci., 34, No. 1, 101–104 (1998).

    Article  Google Scholar 

  7. I. Dzioba, “Wpływ długotrwałej eksploatacji na własności złączy spawanych rurociągów energetycznych,” Energetyka, XVIII, 39– 42 (2008).

    Google Scholar 

  8. I. Dzioba, “Wpływ składników mikrostruktury na własności mechaniczne i odporność na pękanie stali 13HMF,” Energetyka, XXI., 48–51 (2010).

    Google Scholar 

  9. A. Pineau, “Development of the local approach to fracture over the past 25 years: theory and applications,” Int. J. Fract., 138, Nos. 1–4, 139–166 (2006).

    Article  CAS  Google Scholar 

  10. R. O. Ritchie, J. F. Knott, and J. R. Rice, “On the relationship between critical tensile stress and fracture toughness in mild steel,” J. Mech. Phys. Sol., 21, No. 6, 395–410 (1973).

    Article  CAS  Google Scholar 

  11. R. M. McMeeking and D. M. Parks, “On criteria for J-dominance of crack tip fields in large-scale yielding,” in: ASTM STP 668, ASTM, Philadelphia (1979), pp. 175–194.

    Google Scholar 

  12. D. A. Curry and J. F. Knott, “Effect of microstructure on cleavage fracture stress in steel,” Metal Sci., 12, No. 11, 511–514 (1978).

    CAS  Google Scholar 

  13. A. Neimitz, M. Graba, and J. Galkiewicz, “An alternative formulation of the Ritchie–Knott–Rice local fracture criterion,” Eng. Fract. Mech., 74, No. 8, 1308–1322 (2007).

    Article  Google Scholar 

  14. A. Neimitz, J. Galkiewicz, and I. Dzioba, “The ductile to cleavage transition in ferritic Cr–Mo–V steel: A detailed microscopic and numerical analysis,” Eng. Fract. Mech., 77, No. 13, 2504–2526 (2010).

    Article  Google Scholar 

  15. I. Dzioba, M. Gajewski, and A. Neimitz, “Studies of fracture processes in Cr–Mo–V ferritic steel with various types of microstructure,” Int. J. Press. Vess. Pip., 87, 575–586 (2010).

    Article  CAS  Google Scholar 

  16. A. Martin-Meizoso, I. Ocana-Arizcorreta, J. Gil-Sevillano, and M. Fuentes-Perez, “Modeling cleavage fracture of bainitic steels,” Acta Metalurg. Mater., 42, No. 6, 2057–2068 (1994).

    Article  CAS  Google Scholar 

  17. A. Lambert-Perlade, A. Gourgues, J. Besson, et al. “Mechanisms and modeling of cleavage fracture in simulated heat-affect zone microstructures of a high-strength low-alloy steel,” Metal. Mater. Trans., 35A, No. 13, 1039–1053 (2004).

    CAS  Google Scholar 

  18. B. Tanguy, J. Besson, R. Piques, and A. Pineau, “Ductile to brittle transition of an A508 steel characterized by Charpy impact test, Part I: Experimental results,” Eng. Fract. Mech., 72, No. 1, 49–72 (2005).

    Article  Google Scholar 

  19. A. Argon, J. Im, and R. Safoglu, “Cavity formation from inclusions in ductile fracture,” Metallurg. Transact., 6A, No. 4, 825–837 (1975).

    Article  CAS  Google Scholar 

  20. S. Goods and L. Brown, “The nucleation of cavities by plastic deformation,” Acta Metal., 27, No. 1, 1–15 (1979).

    Article  CAS  Google Scholar 

  21. F. M. Beremin, “Cavity formation from inclusions in ductile fracture,” Metal. Trans., 12A, No. 5, 723–731 (1981).

    Google Scholar 

  22. V. I. Vladimirov, Physical Nature of the Fracture of Metals [in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  23. E. Smith and J. T. Barnby, “The nucleation and growth of cleavage microcracks in mild steel,” Metal. Sci. J., 1, 56–65 (1967).

    Article  CAS  Google Scholar 

  24. J. J. Lewandowski and A. W. Thompson, “Micromechanisms of cleavage fracture in fully pearlitic microstructures,” Acta Metal., 35, No. 7, 1453–1462 (1987).

    Article  CAS  Google Scholar 

  25. V. V. Panasyuk, Strength and Fracture of Solids with Cracks, FMI NASU, Lviv (2002).

    Google Scholar 

  26. H. K. D. H. Bhadeshia, Bainite in Steels, Institute of Materials, London (2001).

    Google Scholar 

  27. S. A. Firstov, T. G. Rogul, and O. A. Shut, “Hardening of polycrystals in passing from microscopic to nanostructured state,” Mater. Sci., 45, No. 6, 759–767 (2009).

    Article  Google Scholar 

  28. R. E. Dolby and J. F. Knott, “Toughness of martensitic and martensitic-bainitic microstructures with particular reference to heat-affected zones,” J. Iron Steel Inst., 210, 857–865 (1972).

    CAS  Google Scholar 

  29. R. C. Thomson and H. K. D. H. Bhadeshia, “Changes in chemical composition of carbides in 2.25Cr–1.0Mo power plant steel. Part 1. Bainitic microstructure,” Mater. Sci. Technol., 10, No. 3, 193–203 (1994).

    Article  CAS  Google Scholar 

  30. J. H. Tweed and J. F. Knott, “Micromechanisms of failure in C–Mn weld metal,” Acta Metal., 35, No. 7, 1401–1414 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Dzioba.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol.47, No.5, pp.82–89, September–October, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzioba, I.R. Influence of the components of microstructure on the static crack resistance of 13KHMF steel. Mater Sci 47, 662–669 (2012). https://doi.org/10.1007/s11003-012-9441-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-012-9441-x

Keywords

Navigation