Advertisement

Materials Science

, Volume 47, Issue 5, pp 662–669 | Cite as

Influence of the components of microstructure on the static crack resistance of 13KHMF steel

  • I. R. Dzioba
Article
  • 43 Downloads

By using the Ritchie–Knott–Rice criterion of local fracture, we analyze the conditions of initiation and propagation of microcracks in 13KhMF ferritic steel with various microstructures. The probability of fracture by transgranular cleavage for a given level of stresses σ yy in the tests for static crack resistance is estimated with regard for the grain sizes, the presence of carbides, and their dispersion. For steels with various microstructures, we determine the critical stresses σ C1.0 and critical lengths r C upon the attainment of which the material fails according to the mechanism of transgranular cleavage with probability P f =1.0.

Keywords

ferritic steel microstructure crack resistance 

References

  1. 1.
    E. I. Krutasova, Reliability of the Metal of Power-Generating Equipment [in Russian], Énergoizdat, Moscow (1981).Google Scholar
  2. 2.
    A. Hernas and J. Dobrzański, Trwałość and Niszczenie Elementów Kotłów and Turbin Parowych, WPŚ, Gliwice (2003).Google Scholar
  3. 3.
    I. R. Dzioba, “Properties of 13KhMF steel after operation and degradation under the laboratory conditions,” Mater. Sci., 46, No. 3, 357–364 (2010).CrossRefGoogle Scholar
  4. 4.
    T. Stakhiv, I. Dzioba, B. Lonyuk, and O. Student, “Structural degradation of heat-resistant steels and its influence on the parameters of crack resistance,” Fiz.-Khim. Mekh. Mater., Special Issue, No. 3, 67–72 (2002).Google Scholar
  5. 5.
    O. M. Romaniv, A. N. Tkach, I. R. Dzioba, V. M. Siminkovich, and A. A. Islamov, “Effect of long-term thermomechanical treatment on the crack resistance of 12Kh1MF steel,” Mater. Sci., 25, No. 2, 202–208 (1989).CrossRefGoogle Scholar
  6. 6.
    O. M. Romaniv, H. M. Nykyforchyn, I. R. Dzioba, O. Z. Student, and B. P. Lonyuk, “Effect of in-service damage of 12Kh1MF steam-pipe steel on its crack-resistance characteristics,” Mater. Sci., 34, No. 1, 101–104 (1998).CrossRefGoogle Scholar
  7. 7.
    I. Dzioba, “Wpływ długotrwałej eksploatacji na własności złączy spawanych rurociągów energetycznych,” Energetyka, XVIII, 39– 42 (2008).Google Scholar
  8. 8.
    I. Dzioba, “Wpływ składników mikrostruktury na własności mechaniczne i odporność na pękanie stali 13HMF,” Energetyka, XXI., 48–51 (2010).Google Scholar
  9. 9.
    A. Pineau, “Development of the local approach to fracture over the past 25 years: theory and applications,” Int. J. Fract., 138, Nos. 1–4, 139–166 (2006).CrossRefGoogle Scholar
  10. 10.
    R. O. Ritchie, J. F. Knott, and J. R. Rice, “On the relationship between critical tensile stress and fracture toughness in mild steel,” J. Mech. Phys. Sol., 21, No. 6, 395–410 (1973).CrossRefGoogle Scholar
  11. 11.
    R. M. McMeeking and D. M. Parks, “On criteria for J-dominance of crack tip fields in large-scale yielding,” in: ASTM STP 668, ASTM, Philadelphia (1979), pp. 175–194.Google Scholar
  12. 12.
    D. A. Curry and J. F. Knott, “Effect of microstructure on cleavage fracture stress in steel,” Metal Sci., 12, No. 11, 511–514 (1978).Google Scholar
  13. 13.
    A. Neimitz, M. Graba, and J. Galkiewicz, “An alternative formulation of the Ritchie–Knott–Rice local fracture criterion,” Eng. Fract. Mech., 74, No. 8, 1308–1322 (2007).CrossRefGoogle Scholar
  14. 14.
    A. Neimitz, J. Galkiewicz, and I. Dzioba, “The ductile to cleavage transition in ferritic Cr–Mo–V steel: A detailed microscopic and numerical analysis,” Eng. Fract. Mech., 77, No. 13, 2504–2526 (2010).CrossRefGoogle Scholar
  15. 15.
    I. Dzioba, M. Gajewski, and A. Neimitz, “Studies of fracture processes in Cr–Mo–V ferritic steel with various types of microstructure,” Int. J. Press. Vess. Pip., 87, 575–586 (2010).CrossRefGoogle Scholar
  16. 16.
    A. Martin-Meizoso, I. Ocana-Arizcorreta, J. Gil-Sevillano, and M. Fuentes-Perez, “Modeling cleavage fracture of bainitic steels,” Acta Metalurg. Mater., 42, No. 6, 2057–2068 (1994).CrossRefGoogle Scholar
  17. 17.
    A. Lambert-Perlade, A. Gourgues, J. Besson, et al. “Mechanisms and modeling of cleavage fracture in simulated heat-affect zone microstructures of a high-strength low-alloy steel,” Metal. Mater. Trans., 35A, No. 13, 1039–1053 (2004).Google Scholar
  18. 18.
    B. Tanguy, J. Besson, R. Piques, and A. Pineau, “Ductile to brittle transition of an A508 steel characterized by Charpy impact test, Part I: Experimental results,” Eng. Fract. Mech., 72, No. 1, 49–72 (2005).CrossRefGoogle Scholar
  19. 19.
    A. Argon, J. Im, and R. Safoglu, “Cavity formation from inclusions in ductile fracture,” Metallurg. Transact., 6A, No. 4, 825–837 (1975).CrossRefGoogle Scholar
  20. 20.
    S. Goods and L. Brown, “The nucleation of cavities by plastic deformation,” Acta Metal., 27, No. 1, 1–15 (1979).CrossRefGoogle Scholar
  21. 21.
    F. M. Beremin, “Cavity formation from inclusions in ductile fracture,” Metal. Trans., 12A, No. 5, 723–731 (1981).Google Scholar
  22. 22.
    V. I. Vladimirov, Physical Nature of the Fracture of Metals [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  23. 23.
    E. Smith and J. T. Barnby, “The nucleation and growth of cleavage microcracks in mild steel,” Metal. Sci. J., 1, 56–65 (1967).CrossRefGoogle Scholar
  24. 24.
    J. J. Lewandowski and A. W. Thompson, “Micromechanisms of cleavage fracture in fully pearlitic microstructures,” Acta Metal., 35, No. 7, 1453–1462 (1987).CrossRefGoogle Scholar
  25. 25.
    V. V. Panasyuk, Strength and Fracture of Solids with Cracks, FMI NASU, Lviv (2002).Google Scholar
  26. 26.
    H. K. D. H. Bhadeshia, Bainite in Steels, Institute of Materials, London (2001).Google Scholar
  27. 27.
    S. A. Firstov, T. G. Rogul, and O. A. Shut, “Hardening of polycrystals in passing from microscopic to nanostructured state,” Mater. Sci., 45, No. 6, 759–767 (2009).CrossRefGoogle Scholar
  28. 28.
    R. E. Dolby and J. F. Knott, “Toughness of martensitic and martensitic-bainitic microstructures with particular reference to heat-affected zones,” J. Iron Steel Inst., 210, 857–865 (1972).Google Scholar
  29. 29.
    R. C. Thomson and H. K. D. H. Bhadeshia, “Changes in chemical composition of carbides in 2.25Cr–1.0Mo power plant steel. Part 1. Bainitic microstructure,” Mater. Sci. Technol., 10, No. 3, 193–203 (1994).CrossRefGoogle Scholar
  30. 30.
    J. H. Tweed and J. F. Knott, “Micromechanisms of failure in C–Mn weld metal,” Acta Metal., 35, No. 7, 1401–1414 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Technological UniversityKielcePoland

Personalised recommendations