Advertisement

Materials Science

, Volume 47, Issue 5, pp 621–626 | Cite as

Application of Fractal Geometry to the Problems of Prediction of the Residual Service Life of Aircraft Structures

  • M. V. Karuskevych
  • I. M. Zhuravel’
  • T. P. Maslak
Article

The deformation pattern of the surface of clad aluminum alloys is regarded as an indicator of the degree of accumulated fatigue damage. We demonstrate the possibility of application of the methods of fractal geometry to the analysis of the optical images of deformation patterns. We study a series of procedures used for the calculation of fractal dimensions and propose their complex application to the problems of prediction of the residual service life of aircraft structures according to the state of the deformation pattern.

Keywords

aircraft structures clad aluminum alloy fatigue damage residual service life deformation pattern fractal dimension 

References

  1. 1.
    A. I. Gudkov and P. S. Leshakov, External Loads and Strength of Flying Vehicles [in Russian], Mashinostroenie, Moscow (1968).Google Scholar
  2. 2.
    S. R. Ihnatovych, M. V. Karuskevych, and O. M. Karuskevych, A Method for the Determination of the Residual Service Life of Structural Elements According to the State of Deformation Pattern on the Surface of the Cladding Layer [in Ukrainian], Declarative Patent of Ukraine for a Useful Model No. 3470, Publ. 15.11.2004, Bull. No. 11.Google Scholar
  3. 3.
    M. V. Karuskevich and O. M. Karuskevich, “Monitoring of the degradation of strength of aircraft structures with the help of monocrystalline indicators,” Probl. Sist. Podkhod. Ékon., No. 4, 96–101 (2000).Google Scholar
  4. 4.
    M. V. Karuskevych, E. Yu. Korchuk, T. P. Maslak, et al., “Structural damage and fracture of the reference specimens of fatigue damage,” Aviats.-Kosm. Tekhn. Tekhnol., No. 9 (56), 110–114 (2008).Google Scholar
  5. 5.
    M. V. Karuskevich, S. R. Ignatovich, and O. M. Karuskevich, “Diagnostics of fatigue for clad aluminum alloys,” Vestn. NTUU “KPI,” Mashinostroen., No. 43, 53–55 (2002).Google Scholar
  6. 6.
    O. M. Karuskevich, S. R. Ignatovich, and M. V. Karuskevich, “Evolution of the degree of damage to D16AT alloy near a stress concentrator in the stage preceding the initiation of a fatigue crack,” Aviats.-Kosm. Tekhn. Tekhnol., No. 4 (12), 29–32 (2004).Google Scholar
  7. 7.
    V. I. Bol’shakov, V. N. Volchuk, and Yu. I. Dubrov, Fractals in Materials Science [in Russian], PGASA, Dnepropetrovsk (2005).Google Scholar
  8. 8.
    M. V. Karuskevich, E. Yu. Korchuk, T. P. Maslak, et al., “Estimation of the accumulated fatigue damage according to the saturation and fractal dimension of the deformation pattern,” Probl. Prochn., No. 6, 128–135 (2008).Google Scholar
  9. 9.
    J. Feder, Fractals, Plenum, New York (1988).Google Scholar
  10. 10.
    V. I. Bol’shakov, Yu. I. Dubrov, F. V. Kryulin, and V. M. Volchuk, A Method for the Determination of the Fractal Dimension of Images [in Ukrainian], Patent of Ukraine No. 51439А, Publ. 02.02.2002.Google Scholar
  11. 11.
    I. M. Zhuravel’ and R. A. Vorobel’, “Evaluation of fractal dimensions by using surface integrals,” Vidbir Obrob. Inform., No. 26, 95– 98 (2007).Google Scholar
  12. 12.
    O. M. Karuskevich, “Influence of level of stresses on the development of the deformation pattern,” Vestn. Dvigatelestroen., No. 2, 79–82 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • M. V. Karuskevych
    • 1
  • I. M. Zhuravel’
    • 2
  • T. P. Maslak
    • 1
  1. 1.National Aviation UniversityKyivUkraine
  2. 2.Karpenko Physicomechanical Institute, Ukrainian National Academy of SciencesLvivUkraine

Personalised recommendations