Advertisement

Materials Science

, Volume 46, Issue 2, pp 143–155 | Cite as

Formation of the physicochemical mechanics of materials as a new direction of science

  • V. V. Panasyuk
Article
  • 47 Downloads

We analyze the development of investigations and scientific results in the field of physicochemical mechanics of materials, which plays the role of contemporary scientific direction in materials science. The main stages of development of this direction in the Ukrainian National Academy of Sciences are considered and the role of H. V. Karpenko in the formation and development of this branch of science is described. We also synthesize the most important scientific results, illustrate some their practical applications, and formulate urgent problems of the future investigations.

Keywords

structural materials working media strength of materials fracture and fatigue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Rehbinder, Materials of the IV Congress of Russian Physicists [in Russian], Moscow (1928); Jubilee Collection of the Academy of Sciences of the USSR to the 30th Anniversary of the Great October Revolution [in Russian], Vol. 1, Izd. Akad. Nauk SSSR, Moscow (1947).Google Scholar
  2. 2.
    V. I. Likhtman, P. A. Rehbinder, and G. V. Karpenko, Influence of the Surface-Active Media on the Processes of Deformation of Metals [in Russian], Izd. Akad. Nauk SSSR, Moscow (1954).Google Scholar
  3. 3.
    G. V. Karpenko, Influence of Active Liquid Media on the Endurance of Steel [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1955).Google Scholar
  4. 4.
    V. V. Panasyuk, “On the most important problems of the research into the physicochemical mechanics of structural materials,” Fiz.-Khim. Mekh. Mater., 9, No. 4, 3–12 (1974).Google Scholar
  5. 5.
    V. I. Likhtman, E. D. Shchukin, and P. A. Rehbinder, Physicochemical Mechanics of Metals [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).Google Scholar
  6. 6.
    H. V. Karpenko and F. P. Yanchyshyn, “On the problem of simultaneous influence of corrosive media and stress concentration on the endurance of steel,” Dop. Akad. Nauk Ukr. SSR, No. 6, 525–528 (1955).Google Scholar
  7. 7.
    V. V. Panasyuk and S. E. Kovchik, “Effect of the surface-active medium on the surface brittle-fracture energy of the body,” Dokl. Akad. Nauk SSSR, 146, No. 1, 82–85 (1962).Google Scholar
  8. 8.
    V. V. Panasyuk, L. V. Ratych, and I. N. Dmytrakh, “On some problems of cyclic crack-growth resistance of materials in liquid media,” Fiz.-Khim. Mekh. Mater., 17, No. 6, 42–49 (1982); V. V. Panasyuk, L. V. Ratych, and I. M. Dmytrakh, “Fatigue-crack growth in corrosive environments,” Fatigue Fract. Eng. Mater. Struct., 7, No. 1, 1–11 (1984).Google Scholar
  9. 9.
    G. V. Karpenko and A. V. Karlashov, “Influence of the absolute sizes of specimens on the adsorption and corrosion fatigue of steel,” Dokl. Akad. Nauk SSSR, 92, No. 3, 603–605 (1953).Google Scholar
  10. 10.
    R. G. Pogoretskii, K. P. Tabinskii, N. N. Tkachenko, and G. V. Karpenko, “On the problem of inversion of the scale factor under the conditions of corrosion fatigue of steel,” Fiz.-Khim. Mekh. Mater., 2, No. 3, 357–358 (1966); G. V. Karpenko, R. G. Pogoretskii, V. I. Pokhmurskii, et al., A Machine for Fatigue Tests [in Russian], USSR Author’s Certificate No. 356512, MKI G01n3/34, Publ. on 23.10.72, Bull. No. 37.Google Scholar
  11. 11.
    G. V. Karpenko, K. B. Katsov, I. V. Kokotailo, and V. P. Rudenko, Low-Cycle Fatigue of Steel in Working Media [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  12. 12.
    H. V. Karpenko, Corrosion Fatigue of Steel [in Ukrainian], Vyd. Akad. Nauk Ukr. RSR, Kyiv (1959).Google Scholar
  13. 13.
    H. V. Karpenko and A. I. Yatsyuk, Effect of the Surface Treatment on the Fatigue Strength of Steel in Active Media [in Ukrainian], Vyd. Akad. Nauk Ukr. RSR, Kyiv (1958).Google Scholar
  14. 14.
    G. V. Karpenko, Strength of Steel in Corrosive Media [in Russian], Mashgiz, Moscow (1963).Google Scholar
  15. 15.
    G. V. Karpenko and I. I. Vasilenko, Corrosion Cracking of Steels [in Russian], Tekhnika, Kiev (1971).Google Scholar
  16. 16.
    H. V. Karpenko, On the Physicochemical Mechanics of Metals [in Ukrainian], Naukova Dumka, Kyiv (1973).Google Scholar
  17. 17.
    V. I. Pokhmurskii, Corrosion-Fatigue Strength of Steels and the Methods for Its Elevation [in Russian], Naukova Dumka, Kiev (1974).Google Scholar
  18. 18.
    Yu. I. Babei, Physical Foundations of the Pulsed Hardening of Steel and Cast Iron [in Russian], Naukova Dumka, Kiev (1988).Google Scholar
  19. 19.
    A. N. Tynnyi, Strength and Fracture of Polymers Under the Action of Liquid Media [in Russian], Naukova Dumka, Kiev (1975).Google Scholar
  20. 20.
    G. V. Karpenko, Influence of the Environment on the Strength and Durability of Metals [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  21. 21.
    I. I. Vasilenko and R. K. Melekhov, Corrosion Cracking of Steels [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  22. 22.
    R. K. Melekhov, Corrosion Cracking of Titanium and Aluminum Alloys [in Russian], Naukova Dumka, Kiev (1979); R. K. Melekhov, A. I. Radkevich, A. M. Krutsan, and L. M. Karvatskii, “On the sulfide-cracking resistance of domestic structural steels,” Zashch. Met., No. 5, 493–497 (1977).Google Scholar
  23. 23.
    M. I. Chaevskii and V. F. Shatinskii, Improvement of the Serviceability of Steels in Corrosive Media Under Cyclic Loading [in Russian], Naukova Dumka, Kiev (1970).Google Scholar
  24. 24.
    V. F. Shatinskii, O. M. Zbozhnaya, and G. G. Maksimovich, Application of Diffusion Coatings in Media of Fusible Metals [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  25. 25.
    G. G. Maksimovich, V. F. Shatinskii, and M. S. Goikhman, Diffusion Coatings of Precious Metals [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  26. 26.
    V. I. Pokhmurskii, V. B. Dalisov, and V. M. Golubets, Elevation of the Durability of Machine Parts with the Help of Diffusion Coatings [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  27. 27.
    Yu. I. Babei and N. G. Soprunyuk, Protection of Steels Against Stress-Corrosion Fracture [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  28. 28.
    G. V. Karpenko, Selected Works [in Russian], Vol. 1: Physicochemical Mechanics of Structural Materials, Vol. 2: Serviceability of Structural Materials in Corrosive Media, Naukova Dumka, Kiev (1985).Google Scholar
  29. 29.
    G. G. Maksimovich, V. F. Shatinskii, E. M. Lyutyi, et al., High-Temperature Serviceability of Refractory Metals and Alloys in Corrosive Media [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  30. 30.
    G. G. Maksimovich, V. F. Shatinskii, and V. I. Kopylov, Physicochemical Processes in the Course of Plasma Spraying and Destruction of Materials with Coatings [in Russian], Naukova Dumka, Kiev (1983).Google Scholar
  31. 31.
    G. G. Maksimovich, V. N. Fedirko, Ya. I. Spektor, and A. T. Pichugin, Thermal Treatment of Titanium and Aluminum Alloys in Vacuum and Inert Media [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  32. 32.
    V. F. Shatinskii and A. I. Nesterenko, Protective Diffusion Coatings [in Russian], Naukova Dumka, Kiev (1988).Google Scholar
  33. 33.
    V. I. Pokhmurs’kyi, R. K. Melekhov, H. M. Krutsan, and V. H. Zdanovs’kyi, Stress Corrosion Fracture of Welded Structures [in Ukrainian], Naukova Dumka, Kyiv (1995).Google Scholar
  34. 34.
    V. I. Pokhmurskii, Corrosion Fatigue of Metals [in Russian], Metallurgiya, Moscow (1985).Google Scholar
  35. 35.
    L. N. Petrov and N. G. Soprunyuk, Stress-Corrosion Fracture of Metals [in Russian], Naukova Dumka, Kiev (1991).Google Scholar
  36. 36.
    H. V. Karpenko, Influence of Hydrogen on the Mechanical Properties of Steel [in Ukrainian], Vyd. Akad. Nauk Ukr. RSR, Kyiv (1960).Google Scholar
  37. 37.
    G. V. Karpenko and R. I. Kripyakevich, Influence of Hydrogen on the Properties of Steel [in Russian], Metallurgizdat, Moscow (1962).Google Scholar
  38. 38.
    G. V. Karpenko, A. K. Litvin, and V. I. Tkachev, “On the mechanism of hydrogen brittleness of metals,” Fiz.-Khim. Mekh. Mater., 8, No. 4, 6–11 (1973); G. V. Karpenko, K. B. Katsov, A. K. Litvin, and V. I. Tkachev, A Procedure of Treatment of Metals [in Russian], USSR Author’s Certificate, No. 654,062, Publ. on 05.07.1977, Bull. No. 25.Google Scholar
  39. 39.
    A. K. Litvin and V. I. Tkachev, “Phenomenon of facilitation of the deformation and fracture of metals in the presence of hydrogen,” Fiz.-Khim. Mekh. Mater., No. 2, 27–34 (1976).Google Scholar
  40. 40.
    G. V. Karpenko, K. B. Katsov, A. K. Litvin, and V. I. Tkachev, A Method for Decreasing the Friction Coefficient of Metals [in Russian], USSR Author’s Certificate No. 609,021, Publ. on 30.05.1978, Bull. No. 20.Google Scholar
  41. 41.
    V. N. Zhitomirskii, T. D. Voznyi, and V. I. Tkachev, “Influence of hydrogen on the deformation of the surface layers of metals,” Fiz.-Khim. Mekh. Mater., 17, No. 3, 115–116 (1982).Google Scholar
  42. 42.
    V. I. Pokhmurskii, M. M. Shved, and N. Ya. Yaremchenko, Influence of Hydrogen on the Processes of Deformation and Fracture of Iron and Steel [in Russian], Naukova Dumka, Kiev (1977); M. M. Shved, Changes in the Operating Properties of Iron and Steel Under the Influence of Hydrogen [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  43. 43.
    V. I. Pokhmurskii and V. V. Fedorov, “Some specific features of the influence of hydrogen on the magnetic and structural transformations in transition metals and alloys based on these metals,” Fiz.-Khim. Mekh. Mater., 16, No. 1, 3–11 (1981).Google Scholar
  44. 44.
    V. I. Pokhmurskii, I. I. Sidorak, R. G. Parkheta, et al., Methodical Recommendations on the Evaluation of High-Temperature Hydrogen Permeability of Metals [in Russian], Preprint No. 117, Physicomechanical Institute, Academy of Sciences of the Ukr. SSR, Lviv (1983); OST 92–4949–84: Branch Standard. Metals. Methods for the Evaluation of High-Temperature Hydrogen Permeability [in Russian], Moscow (1984).Google Scholar
  45. 45.
    V. I. Pokhmurs’kyi, “Investigations of the influence of hydrogen on metals carried out at the Karpenko Physicomechanical Institute,” Fiz.-Khim. Mekh. Mater., 33, No. 4, 25–38 (1997); English translation: Mater. Sci., 33, No. 4, 421–435 (1997).Google Scholar
  46. 46.
    A. E. Andreikiv, V. V. Panasyuk, and V. S. Kharin, “Theoretical aspects of the kinetics of hydrogen embrittlement of metals,” Fiz.-Khim. Mekh. Mater., No. 3, 3–23 (1978).Google Scholar
  47. 47.
    V. V. Panasyuk, A. E. Andreikiv, and V. S. Kharin, “A model of crack growth in deformed metals under the action of hydrogen,” Fiz.-Khim. Mekh. Mater., 22, No. 2, 3–17 (1987).Google Scholar
  48. 48.
    V. V. Panasyuk, A. E. Andreikiv, and O. I. Obukhivskii, “A numerical model of crack growth in metals under the action of hydrogen,” Fiz.-Khim. Mekh. Mater., 19, No. 3, 3–6 (1984).Google Scholar
  49. 49.
    A. E. Andreikiv and O. M. Goliyan, “Subcritical growth of fatigue cracks in metals under the action of hydrogen,” Fiz.-Khim. Mekh. Mater., 20, No. 4, 5–8 (1985).Google Scholar
  50. 50.
    A. E. Andreikiv, N. V Lysak, V. R. Skal’skii, et al., “Acoustic-emission monitoring of hydrogen cracking in metals and alloys,” Fiz.-Khim. Mekh. Mater., 28, No. 4, 63–69 (1992); English translation: Soviet Mater. Sci., 28, No. 4, 378–382 (1992).Google Scholar
  51. 51.
    A. E. Andreikiv and O. V. Hembara, Fracture Mechanics and Durability of Metallic Materials in Hydrogen-Containing Media [in Ukrainian], Naukova Dumka, Kyiv (2008).Google Scholar
  52. 52.
    V. V. Panasyuk, O. Ye. Andrejkiv, O. I. Darchuk, and N. V. Kuznyak, “Influence of hydrogen-containing elements on cyclic crack-growth resistance of metals,” in: A. Carpinteri (editor), Handbook of Fatigue Crack Propagation in Metallic Structures, Elsevier, Amsterdam (1994), pp. 1205–1242.Google Scholar
  53. 53.
    V. Fedorov, I. Bulyk, and V. Panasyuk, “Application of hydrogen as a working medium in manufacturing constant magnets based on alloys with rare-earth metals,” in: Proc. 4th Internat. Conf. “Fracture Mechanics of Materials and Strength of Structures” [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (2009), pp. 603–608.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations