Materials Science

, 45:409 | Cite as

Influence of the intensity of constant magnetic field on the structure and properties of composites based on epoxy polymers and Fe (III) or Al(III) oxides

  • V. O. Vilens’kyi
  • V. L. Demchenko

We study the influence of the intensity of constant external magnetic fields on the structure, thermal properties, and electric conductivity of composites based on ED-20 epoxy resin and one of the metal oxides (Al2 O3 or Fe2 O3). It is shown that, under the action of the magnetic field, the Fe2O3 crystallites in the structure of the composite become finer (L ≈ 18 nm → 5.4 nm) and the densities of the initial epoxy polymer, the composites based on this polymer, and one of the metal oxides (Al2 O3 or Fe2 O3) increase, which, in turn, affects the other properties of these compounds, in particular, their specific heat and conductivity.


magnetic field composite structure specific heat capacity conductivity 


  1. 1.
    S. Ya. Frenzel’, I. M. Tsygel’nyi, and B. S. Kolupaev, Molecular Cybernetics [in Russian], Svit, Lviv (1990).Google Scholar
  2. 2.
    A. Dufresne and J.-Y. Cavaille, “Clustering and percolation effects in microcrystalline starch-reinforced thermoplastics,” J. Polym. Sci. Part B: Polym. Phys., 36, No. 2, 2211-2224 (1998).CrossRefGoogle Scholar
  3. 3.
    D. C. Lee and L. W. Jang, “Characterization of epoxy-clay hybrid composite prepared by emulsion polymerization,” J. Appl. Polym. Sci., 68, No. 12, 1997–2005 (1998).CrossRefGoogle Scholar
  4. 4.
    A. Dufresne, J.-Y. Cavaille, and W. Helbert, “New nanocomposite materials. Microcrystalline starch-reinforced thermoplastic,” Macromolecules, 29, No. 23, 7624–7626 (1996).CrossRefADSGoogle Scholar
  5. 5.
    M. Funabashi, “Volume resistivity of carbon-fibre-filled epoxy-resin under shear flow,” Polym. Int., 45, No. 3, 303–307 (1998).CrossRefGoogle Scholar
  6. 6.
    V. O. Vilens’kyi and V. L. Demchenko, “Influence of the nature of dispersed fillers on the structure and thermal and dielectric properties of the composites based on epoxy resin,” Polim. Zh., 30, No. 2, 133–140 (2008).Google Scholar
  7. 7.
    O. Kratky, I. Pilz, and P. J. Schmitz, “Absolute intensity measurement of small-angle X-ray scattering by means of a standard sample,” J. Colloid. Interface Sci., 21, No. 1, 24–34 (1966).CrossRefGoogle Scholar
  8. 8.
    Yu. K. Godovskii, Thermophysical Methods for the Investigation of Polymers [in Russian], Khimiya, Moscow (1976).Google Scholar
  9. 9.
    I. L. Knunyants (editor), Chemical Encyclopaedia [in Russian], Bol’shaya Rossiiskaya Entsiklopediya, Moscow (1992).Google Scholar
  10. 10.
    A. I. Kitaigorodskii, Molecular Crystals [in Russian], Nauka, Moscow (1971).Google Scholar
  11. 11.
    A. Guinier, X-Ray Technology, Hilger & Watts, London (1952).Google Scholar
  12. 12.
    G. V. Samsonov, et al., Physicochemical Properties of Oxides. A Handbook [in Russian], Metallurgiya, Moscow (1978).Google Scholar
  13. 13.
    V. O. Vilenskii, Yu. Yu. Kercha, G. E. Glievaya, and V. A. Ovsyankina, “Influence of a constant magnetic field on the structure and properties of composites based on incompatible polymers,” Vysokomolek. Soedin., 47, No. 12, 2130–2139 (2005).Google Scholar
  14. 14.
    V. O. Vilens’kyi, Yu. Yu. Kercha, H. E. Hlieva, and V. A. Ovsyankina, “Influence of a constant magnetic field on the compatibility of polymers in composites,” Dop. Nats. Akad. Nauk Ukr., No. 3, 132–138 (2005).Google Scholar
  15. 15.
    V. O. Vilens’kyi, V. A. Ovsyankina, and V. I. Shtompel’, “X-ray investigation of the influence of constant magnetic fields on the structure of composites based on urethane-containing polymers,” Polim. Zh., 26, No. 1, 26–32 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Institute of Chemistry of High-Molecular CompoundsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations