Advertisement

Materials Science

, Volume 44, Issue 1, pp 79–86 | Cite as

Modeling of the surface treatment of passive metals

  • M. V. Ved’
  • M. D. Sakhnenko
  • O. V. Bohoyavlens’ka
  • T. O. Nenastina
Article

Abstract

On the basis of analysis of the specific features of physicochemical reactions leading to the local destruction of the surface of passive metals, we conclude that it is impossible to construct an adequate kinetic model of its evolution. For modeling the processes of formation of the surface of metals inclined to passivation, we propose to use the formalization of discrete states with subsequent analysis of the dynamics of these processes. We have constructed a simulation model of the transformation of the morphology of an electrochemically active surface under the action of polarization by pulse current and proposed a scheme of the corresponding technological process and a quantitative criterion for the completion of treatment.

Keywords

Anodic Polarization Oriented Graph Service Life Prediction Local Dissolution Passive Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Ved’, V. V. Shtefan, N. D. Sakhnenko, and A. G. Grzhimalo, “Strategy of the electrochemical synthesis of organic conductors,” in: Bulletin of the National Technical University “Kharkivs’kyi Politekhnichnyi Instytut” [in Russian], No. 27 (2005), pp. 167–170.Google Scholar
  2. 2.
    A. G. Atanasyants, B. P. Saushkin, and A. V. Maslov, “Problems of the electrochemical treatment of metals in nontraditional electrolytes,” Gal’vanotekh. Obrab. Poverkhn., 1, No. 3–4, 67–73 (1992).Google Scholar
  3. 3.
    M. V. Ved’, M. D. Sakhnenko, O. V. Bohoyavlens’ka, and T. O. Nenastina, “Electrochemical forming treatment of the surface of corrosion-resistant alloys,” Vopr. Khim. Khim. Tekhnol., No. 3, 117–125 (2006).Google Scholar
  4. 4.
    Yu. I. Kuznetsov and N. N. Andreev, “On the role of the reaction center of aromatic compounds in the course of inhibition of the local dissolution of iron,” Zashch. Met., 28, No. 1, 96–101 (1992).Google Scholar
  5. 5.
    L. I. Freiman, “Stability and kinetics of the development of pittings,” in: VINITI Series in Corrosion and Rust Protection [in Russian], VINITI, Moscow (1985), pp. 3–71.Google Scholar
  6. 6.
    A. M. Sukhotin, Physical Chemistry of Passivating Films on Iron [in Russian], Khimiya, Leningrad (1989).Google Scholar
  7. 7.
    H. Kaesche, Die Korrosion der Metalle. Physikalisch-Chemische Prinzipien und Aktuelle Probleme, Springer, Berlin (1979).CrossRefGoogle Scholar
  8. 8.
    A. L. Rotinyan, K. I. Tikhonov, and I. A. Shoshina, Theoretical Electrochemistry [in Russian], Khimiya, Leningrad (1981).Google Scholar
  9. 9.
    N. Sakhnenko, M. Ved, and K. Nikiforov, “Simulation of metal-polymer coating system for service life prediction,” Simul. Pract. Theory, 6, No. 7, 647–656 (1998).CrossRefGoogle Scholar
  10. 10.
    M. D. Sakhnenko, “Application of the systems approach to determining the protective action of anticorrosive coats,” Ukr. Khim. Zh., 63, No. 6, 101–109 (1997).Google Scholar
  11. 11.
    N. A. J. Hastings and J. B. Peacock, Statistical Distributions: A Handbook for Students and Practitioners, Butterworths, London (1975).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • M. V. Ved’
    • 1
  • M. D. Sakhnenko
    • 1
  • O. V. Bohoyavlens’ka
    • 1
  • T. O. Nenastina
    • 1
  1. 1.“Kharkiv Polytechnic Institute” National Technical UniversityKharkivUkraine

Personalised recommendations