Advertisement

Materials Science

, Volume 43, Issue 5, pp 608–619 | Cite as

Modeling of phase transformations in metal-hydrogen systems by using multicenter potentials of interatomic interaction

  • A. M. Dobrotvorskii
Article
  • 43 Downloads

Abstract

We present the results of modeling of phase transformations in Fe-H, V-H, Ti-H, and Mg-H systems performed by using multicenter potentials constructed in the quasifermionic approximation. These potentials take into account the short-term interatomic interactions and the contributions made to the bonding energy by the delocalization and transfer of the electron charges. This enables us to model the structural transformations of metals in broad ranges of the concentrations of hydrogen.

Keywords

Hydride Bonding Energy Interatomic Interaction Titanium Hydride Tetragonal Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Andrievskii, “Physical chemistry of hydrides as compact sources of hydrogen,” Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 14, No. 9, 1563–1569 (1978).Google Scholar
  2. 2.
    G. Alefeld, “Introduction,” in: G. Alefeld and J. Völkl (editors), Hydrogen in Metals. Application-Oriented Properties [Russian translation], Vol. 2, Mir, Moscow (1981), pp. 6–16.Google Scholar
  3. 3.
    R. Wiswall, “Storage of hydrogen in metals,” in: G. Alefeld and J. Völkl (editors), Hydrogen in Metals. Application-Oriented Properties [Russian translation], Vol. 2, Mir, Moscow (1981), pp. 241–289.Google Scholar
  4. 4.
    A. M. Dobrotvorskii, “Quasifermionic approximation in the molecular models of solid body,” Teor. Éksper. Khim., 27, Issue 4, 437–442 (1991).Google Scholar
  5. 5.
    A. M. Dobrotvorskii and O. V. Afanas'eva, “A quasifermion approach to modeling interatomic interaction in solids,” J. Phys: Condens. Mater., 5, No. 7, 8893 (1993).CrossRefGoogle Scholar
  6. 6.
    A. M. Dobrotvorskii, O. V. Afanas'eva, and Yu. I. Archakov, “Quantum-chemical examination of the penetration of hydrogen ions and its isotopes through metals and alloys,” Fiz.-Khim. Mekh. Mater., 29, No. 1, 45–48 (1993).Google Scholar
  7. 7.
    A. M. Dobrotvorskii and Yu. I. Archakov, “Simulation of the influence of interstitial hydrogen on the structural transformations and mass transfer in metals,” Zh. Tekh. Fiz., 65, Issue 6, 109–122 (1995).Google Scholar
  8. 8.
    Yu. I. Archakov, A. M. Dobrotvors'kyi, V. I. Polhmurs'kyi, and V. V. Fedorov, “Mechanism of the influence of hydrogen on the self-diffusion of nickel,” Fiz.-Khim. Mekh. Mater., 31, No. 4, 68–75 (1995).Google Scholar
  9. 9.
    R. McWeeny and B. T. Sutcliffe, Methods of Molecular Quantum Mechanics, Academic Press, London-New-York (1969).Google Scholar
  10. 10.
    M. M. Mestechkin, Method of Density Matrix in the Theory of Molecules [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  11. 11.
    V. I. Pokhmurs'kyi and V. V. Fedorov, Influence of Hydrogen on the Diffusion Processes in Metals [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences, Lviv (1998).Google Scholar
  12. 12.
    R. A. Évarestov, Quantum-Chemical Methods in the Theory of Solids [in Russian], Izd. Leningrad. Univ., Leningrad (1982).Google Scholar
  13. 13.
    P. J. Hay and W. R. Wadt, “Ab-initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg,” J. Chem. Phys., 82, No. 1, 270–283 (1985).CrossRefGoogle Scholar
  14. 14.
    W. R. Wadt and P. J. Hay, “Ab-initio effective core potentials for molecular calculations. Potentials for main group atoms Na to Bi,” J. Chem. Phys., 82, No. 1, 284–298 (1985).CrossRefGoogle Scholar
  15. 15.
    V. I. Shapovalov, “Hydrogen as an alloying element in metals,” Zh. Fiz. Khim., 7, Issue II, 2899–2905 (1980).Google Scholar
  16. 16.
    H. Peisl, “Hydrogen-assisted deformations of metal lattices,” in: G. Alefeld and J. Völkl (editors), Hydrogen in Metals. Application-Oriented Properties [Russian translation], Vol. 2, Mir, Moscow (1981), pp. 63–93.Google Scholar
  17. 17.
    O. M. Barabash and Yu. N. Koval', Structure and Properties of Metals and Alloys. A Handbook. Crystal Structure of Metals and Alloys [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  18. 18.
    V. A. Somenkov, “Structure of hydrides,” Ber. Bunsenges. Phyk. Chem., 76, No. 8, 733–739 (1972).Google Scholar
  19. 19.
    T. Schober and H. Wenzel, “Nb-H(D), Ta-H(D), and V-H(D) systems: structures, diagrams, morphology, and the methods of preparation,” in: G. Alefeld and J. Völkl (editors), Hydrogen in Metals. Application-Oriented Properties [Russian translation], Vol. 2, Mir, Moscow (1981), pp. 17–90.Google Scholar
  20. 20.
    V. A. Somenkov and S. S. Shil'stein, “Structural behavior of hydrogen in metals and intermetallic compounds,” Zeit. Phys. Chem. NF., 117, 125–144 (1979).Google Scholar
  21. 21.
    B. Stalinski, “Structural problems of transition metal hydrides,” Ber. Bunsenges. Phyk. Chem., 76, No. 8, 724–732 (1972).Google Scholar
  22. 22.
    F. A. Shunk, Constitution of Binary Alloys, McGrow-Hill, New-York-St. Louis-San-Francisco-London-Sydney-Toronto-Mexico-Panama.Google Scholar
  23. 23.
    A. Fujimori and N. Tsuda, “Electronic structure of nonstoichiometric titanium hydride,” J. Less-Common Met., 88, No. 2, 269–272 (1982).CrossRefGoogle Scholar
  24. 24.
    N. I. Kulikov and V. V. Tugushev, “Electronic theory of structural phase transformations in dihydrides of IVB transition metals,” Fiz. Tverd. Tela, 23, No. 9, 2790–2794 (1981).Google Scholar
  25. 25.
    D. V. Schur, S. Yu. Zaginaichenko, V. M. Adejev et al., “Phase transformations in titanium hydrides,” Int. J. Hydr. Energy, 21, No. 11–12, 1121–1124 (1996).CrossRefGoogle Scholar
  26. 26.
    Wei-E. Wang, “Thermodynamic evaluation of the titanium-hydrogen system,” J. Alloys Comp., 238, 2–12 (1996).CrossRefGoogle Scholar
  27. 27.
    I. Narai-Sabo, Inorganic Crystallochemistry, Hungarian Acad. Sci., Budapest (1969).Google Scholar
  28. 28.
    K. Zeng, T. Klassen, W. Oelerich, and R. Bormann, “Critical assessment and thermodynamic modeling of the Mg-H system,” Int. J. Hydr. Energy, 24, 989–1004 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. M. Dobrotvorskii
    • 1
  1. 1.“VNIINeftekhim” Open Joint-Stock Company“Lenkor” Scientific-and-Production CorporationSt. PetersburgRussia

Personalised recommendations