Skip to main content
Log in

Influence of texture on the short fatigue crack growth in austenitic stainless steel

  • Published:
Materials Science Aims and scope

Abstract

We study the influence of texture on the propagation of short cracks on the basis of the evolution of a family of microcracks in 316L austenitic stainless steel under the conditions of symmetric tension-compression. It is shown that the process of crack initiation is concentrated on grain boundaries and strongly depends on the mesostructure. In the process of fatigue fracture, the transcrystalline propagation of the largest crack (affected mainly by the global texture) is predominant. We discuss two approaches to the prediction of the influence of texture on the fatigue life. According to the concept of equivalent crack, this influence can be estimated depending on the size of the largest crack. On the contrary, the Zhurkov criterion deals with the state of the defect characterized by the presence of a family of microcracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. C. Newman, Jr., E. P. Philips, and M. H. Swain, “Fatigue-life prediction methodology using small-crack theory,” Int. J. Fatigue, 21, 109–119 (1999).

    Article  CAS  Google Scholar 

  2. K. J. Miller, “A historical perspective of the important parameters of metal fatigue and problems for the next century,” in: X. R. Wu and Z. G. Wang (editors), Proc. Fatigue ’99, Vol. 1 EMAS Cradley Heath, U. K (1999), pp. 15–39.

    Google Scholar 

  3. F. O. Riemelmoser, P. Gumbsch, and R. Pippan, “Plastic deformation at short cracks under fatigue loading,” Eng. Fract. Mech., 66, 1–18 (2000).

    Article  Google Scholar 

  4. C. Blochwitz and R. Richter, “Plastic strain amplitude dependent surface path of microstructurally short fatigue cracks in f.c.c. metals,” Mater. Sci. Eng., A267, 120–129 (1999).

    Google Scholar 

  5. K. Tokaji and T. Ogawa, “The growth behavior of microstructurally small fatigue cracks in metals, ” in: K. J. Miller and E. R. de los Rios (editors), Short Fatigue Cracks, ESIS 13, Mech. Eng. Publ., London (1992), pp. 85–99.

    Google Scholar 

  6. Blochwitz C. and W. Tirschler, “Influence of texture on twin boundary cracks in fatigued austenitic stainless steel,” Mater. Sci. Eng., A339, 319–327 (2003).

    Google Scholar 

  7. A. Heinz and P. Neumann, “Crack initiation during high cycle fatigue of an austenitic steel,” Acta Metal. Mater., 38, 1933–1940 (1990).

    Article  CAS  Google Scholar 

  8. M. Mineur, P. Villechaise, and J. Mendez, “Influence of the crystalline texture on the fatigue behavior of a 316L austenitic stainless steel,” Mater. Sci. Eng., A286, 257–268 (2000).

    CAS  Google Scholar 

  9. H. Vehoff and P. Neumann, “In situ SEM experiments concerning the mechanism of ductile crack growth,” Acta Metallurgica, 27, No. 5, 915–920 (1979).

    Article  CAS  Google Scholar 

  10. C. Laird and G. C. Smith, “Crack propagation in high stress fatigue,” Philosophical Magazine, 7, Taylor & Francis, London (1962).

    Google Scholar 

  11. C. Blochwitz and W. Tirschler, “Twin boundaries as crack nucleation sites,” Crystal Res. Technol., 40, 32–41 (2005).

    Article  CAS  Google Scholar 

  12. K. Obrtlik, J. Polak, M. Hajek, and A. Vasek, “Short fatigue crack behavior in 316L stainless steel,” Int. J. Fatigue, 19, 471–475 (1997).

    Article  CAS  Google Scholar 

  13. J. Polak, Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, Amsterdam (1991).

    Google Scholar 

  14. S. N. Zhurkov, V. S. Kuksenko, V. A. Petrov, V. N. Saveliev, and U. S. Sultanov, Izv. Akad. Nauk SSSR, Fiz. Zemli, 6, 11 (1977).

    Google Scholar 

  15. K. J. Miller, “Foreword,” in: K. J. Miller and E. R. de los Rios, Short Fatigue Cracks, ESIS-13, Mech. Eng. Publ., London (1992), pp. 9–12.

    Google Scholar 

  16. J. C. Newman, Jr., “The merging of fatigue and fracture mechanics concepts: a historical perspective,” Progr. Aerospace Sci., 34, Nos. 5–6, 345–388 (1998).

    Google Scholar 

  17. V. S. Kuksenko, “Diagnostics and forecasting of breakage of large-scale objects,” Fiz. Tverd. Tela, 47, 812–816 (2005).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 42, No. 4, pp. 84–94, July–August, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikulich, V., Blochwitz, C., Skrotzki, W. et al. Influence of texture on the short fatigue crack growth in austenitic stainless steel. Mater Sci 42, 514–526 (2006). https://doi.org/10.1007/s11003-006-0109-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-006-0109-2

Keywords

Navigation