Materials Science

, Volume 42, Issue 4, pp 514–526 | Cite as

Influence of texture on the short fatigue crack growth in austenitic stainless steel

  • V. Mikulich
  • C. Blochwitz
  • W. Skrotzki
  • W. Tirschler


We study the influence of texture on the propagation of short cracks on the basis of the evolution of a family of microcracks in 316L austenitic stainless steel under the conditions of symmetric tension-compression. It is shown that the process of crack initiation is concentrated on grain boundaries and strongly depends on the mesostructure. In the process of fatigue fracture, the transcrystalline propagation of the largest crack (affected mainly by the global texture) is predominant. We discuss two approaches to the prediction of the influence of texture on the fatigue life. According to the concept of equivalent crack, this influence can be estimated depending on the size of the largest crack. On the contrary, the Zhurkov criterion deals with the state of the defect characterized by the presence of a family of microcracks.


Fatigue Fatigue Life Crack Length Crack Growth Rate Austenitic Stainless Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Newman, Jr., E. P. Philips, and M. H. Swain, “Fatigue-life prediction methodology using small-crack theory,” Int. J. Fatigue, 21, 109–119 (1999).CrossRefGoogle Scholar
  2. 2.
    K. J. Miller, “A historical perspective of the important parameters of metal fatigue and problems for the next century,” in: X. R. Wu and Z. G. Wang (editors), Proc. Fatigue ’99, Vol. 1 EMAS Cradley Heath, U. K (1999), pp. 15–39.Google Scholar
  3. 3.
    F. O. Riemelmoser, P. Gumbsch, and R. Pippan, “Plastic deformation at short cracks under fatigue loading,” Eng. Fract. Mech., 66, 1–18 (2000).CrossRefGoogle Scholar
  4. 4.
    C. Blochwitz and R. Richter, “Plastic strain amplitude dependent surface path of microstructurally short fatigue cracks in f.c.c. metals,” Mater. Sci. Eng., A267, 120–129 (1999).Google Scholar
  5. 5.
    K. Tokaji and T. Ogawa, “The growth behavior of microstructurally small fatigue cracks in metals, ” in: K. J. Miller and E. R. de los Rios (editors), Short Fatigue Cracks, ESIS 13, Mech. Eng. Publ., London (1992), pp. 85–99.Google Scholar
  6. 6.
    Blochwitz C. and W. Tirschler, “Influence of texture on twin boundary cracks in fatigued austenitic stainless steel,” Mater. Sci. Eng., A339, 319–327 (2003).Google Scholar
  7. 7.
    A. Heinz and P. Neumann, “Crack initiation during high cycle fatigue of an austenitic steel,” Acta Metal. Mater., 38, 1933–1940 (1990).CrossRefGoogle Scholar
  8. 8.
    M. Mineur, P. Villechaise, and J. Mendez, “Influence of the crystalline texture on the fatigue behavior of a 316L austenitic stainless steel,” Mater. Sci. Eng., A286, 257–268 (2000).Google Scholar
  9. 9.
    H. Vehoff and P. Neumann, “In situ SEM experiments concerning the mechanism of ductile crack growth,” Acta Metallurgica, 27, No. 5, 915–920 (1979).CrossRefGoogle Scholar
  10. 10.
    C. Laird and G. C. Smith, “Crack propagation in high stress fatigue,” Philosophical Magazine, 7, Taylor & Francis, London (1962).Google Scholar
  11. 11.
    C. Blochwitz and W. Tirschler, “Twin boundaries as crack nucleation sites,” Crystal Res. Technol., 40, 32–41 (2005).CrossRefGoogle Scholar
  12. 12.
    K. Obrtlik, J. Polak, M. Hajek, and A. Vasek, “Short fatigue crack behavior in 316L stainless steel,” Int. J. Fatigue, 19, 471–475 (1997).CrossRefGoogle Scholar
  13. 13.
    J. Polak, Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, Amsterdam (1991).Google Scholar
  14. 14.
    S. N. Zhurkov, V. S. Kuksenko, V. A. Petrov, V. N. Saveliev, and U. S. Sultanov, Izv. Akad. Nauk SSSR, Fiz. Zemli, 6, 11 (1977).Google Scholar
  15. 15.
    K. J. Miller, “Foreword,” in: K. J. Miller and E. R. de los Rios, Short Fatigue Cracks, ESIS-13, Mech. Eng. Publ., London (1992), pp. 9–12.Google Scholar
  16. 16.
    J. C. Newman, Jr., “The merging of fatigue and fracture mechanics concepts: a historical perspective,” Progr. Aerospace Sci., 34, Nos. 5–6, 345–388 (1998).Google Scholar
  17. 17.
    V. S. Kuksenko, “Diagnostics and forecasting of breakage of large-scale objects,” Fiz. Tverd. Tela, 47, 812–816 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. Mikulich
    • 1
  • C. Blochwitz
    • 1
  • W. Skrotzki
    • 1
  • W. Tirschler
    • 1
  1. 1.Institute of Structural PhysicsDresden University of TechnologyGermany

Personalised recommendations