Advertisement

Materials Science

, Volume 41, Issue 6, pp 839–842 | Cite as

Fracture of layered gallium and indium chalcogenides

  • O. O. Balyts’kyi
Brief Communications

Keywords

Indium Structural Material Gallium Indium Chalcogenide Layered Gallium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Schaper, M. Jurisch, F. Bergner, and R. Hammer, “Fracture mechanical strength evaluation of GaAs and Si wafers GaAs,” in: V. V. Panasyuk (editor), Fracture Mechanics of Materials and Structural Integrity [in Russian], Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences, Lviv (2004), pp. 593–598.Google Scholar
  2. 2.
    K. T. Faber, The Mechanical Properties of Semiconductors, Academic, San Diego (1992).Google Scholar
  3. 3.
    N. V. Novikov and A. L. Maistrenko, “Crack resistance of crystalline and composite superhard materials,” Fiz.-Khim. Mekh. Mater., 19, No. 4, 46–53 (1983).Google Scholar
  4. 4.
    O. O. Balyts’kyi, “Degradation and fracture of crystals of gallium and indium selenides,” Mater. Sci., 39, No. 4, 561–565 (2003).CrossRefGoogle Scholar
  5. 5.
    O. O. Balyts’kyi, “Elastic characteristics of laminated gallium and indium chalcogenides,” Mat. Sci., 40, No. 5, 706–709 (2004).CrossRefGoogle Scholar
  6. 6.
    I. S. Adhihetty, J. B. Vella, A. A. Volinsky, et al., “Mechanical properties, adhesion, and fracture toughness of low-K dielectric thin films for microelectronic applications,” in: Proceedings of the 10th International Conf. on Fracture (Honolulu, Hawaii, Dec. 2–6, 2001), Elsevier (2002), p. 532.Google Scholar
  7. 7.
    Y. Harada, T. Suzuki, and K. Hirano, “Ultra-high temperature creep behavior for in-situ single crystal Al2O3/YAG oxide ceramic eutectic composites,” in: Proceedings of the 10th International Conf. on Fracture (Honolulu, Hawaii, Dec. 2–6, 2001), Elsevier (2002), p. 642.Google Scholar
  8. 8.
    R. H. Dauskardt, “Fracture and multi-scale simulations of thin-film structures,” in: Proceedings of the 10th International Conf. on Fracture (Honolulu, Hawaii, Dec. 2–6, 2001), Elsevier (2002), p. 572.Google Scholar
  9. 9.
    J. Reji, D. J. Buchanan, and L. P. Zawada, “Fracture and creep rupture behaviour of notched oxide/oxide and SiC/SiC CMC,” in: Proceedings of the 10th International Conf. on Fracture (Honolulu, Hawaii, Dec. 2–6, 2001), Elsevier (2002), p. 530.Google Scholar
  10. 10.
    K. Takashima, Y. Higo, and M. V. Swain, “Fatigue crack growth behavior of micro-sized specimens prepared from amorphous alloy thin films,” in: Proceedings of the 10 th International Conf. on Fracture (Honolulu, Hawaii, Dec. 2–6, 2001), Elsevier (2002), p. 127.Google Scholar
  11. 11.
    J. C. J. M. Terhell, “Polytypism in the III–VI layer compounds,” Progr. Cryst. Growth Charact., 7, 55–110 (1983).CrossRefGoogle Scholar
  12. 12.
    K. C. Mills, Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, Butterworth, London (1974).Google Scholar
  13. 13.
    L. L. Chang and K. Ploog, Molecular Beam Epitaxy and Heterostructures, Martinus Nijhoff, Dordrecht (1985).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • O. O. Balyts’kyi
    • 1
  1. 1.Franko Lviv National UniversityLviv

Personalised recommendations