Materials Science

, Volume 41, Issue 5, pp 686–692 | Cite as

Corrosion cracking of cast Cr—Ni—Mo ferritic—austenitic steels

  • R. K. Melekhov
  • O. I. Radkevych
  • H. V. Chumalo
  • R. M. Yurkevych


We study two-phase cast steels in aggressive media most extensively encountered in industry and nature, namely, chloride, alkali, and hydrogen-sulfide media. Unlike austenitic cast steels, two-phase cast steels prove to be promising structural materials for the operation in hot concentrated alkali media and chloride solutions of low concentrations. In the case where the concentration of chlorides may increase, working stresses can be found according to their threshold values. The two-phase cast steels are unsuitable for operation in hydrogenating media.


Chloride Structural Material Chloride Solution Austenitic Steel Cast Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Cryzanowicz, “Charakterystyka stali odpornych na korozję o strukturze austenityczno—ferrytycznej,” Prace Inst. Met. Żelaza, No. 3–4, 108–116 (1984).Google Scholar
  2. 2.
    J. Charles, M. Vernau, J. P. Audouard, and S. Demars, “Some duplex application. Test results and practical experience,” in: Proc. of the Stainless Steel World 99 Conf. on Corrosion Resistant Alloys, the Hague, the Netherlands (1999), pp. 473–485.Google Scholar
  3. 3.
    B. Walden and J. M. Nickolls, “The sandvik duplex family of stainless steels. Summary data,” in: Proc. of the Seventh Kor. Symp. Bildiriler Kitabi, Izmir, Turkey (1988), pp. 102–122.Google Scholar
  4. 4.
    J. Korkhaus, “Application of corrosion-resistant steel in chemical industry,” in: Proc. of the Stainless Steel World 99 Conf., KCL Publishing BV (1999), pp. 27–41.Google Scholar
  5. 5.
    J. Łabowski, “Dwufazove stale odporne na korozję,” Pregl. Mechaniczny, 23–24 (1995).Google Scholar
  6. 6.
    J. Łabowski, A. Ossowska, and J. Ćwiek, “Influence of cold worked layer on susceptibility to stress corrosion cracking of duplex stainless steel,” in: Proc. of the 16th Ph. Metal. and Mat. Sci. Conf on Advanced Materials and Technology AMT’ 2001, Inzynieria Materiałowa, Gdańsk—Jurata (2001), pp. 558–561.Google Scholar
  7. 7.
    B. I. Voronenko, “Contemporary corrosion-resistant austenitic—ferritic steels (a survey),” Metalloved. Term. Obrab. Metal., 10, 20–29 (1997).Google Scholar
  8. 8.
    W. T. Tsai and S. L. Chou, “Environmentally assisted cracking behavior of duplex stainless steel in concentrated sodium chloride solution,” Cor. Sci., 42, 1741–1762 (2000).Google Scholar
  9. 9.
    Yu. I. Romatovskii, B. I. Voronenko, M. N. Parusov, and L. N. Pichugina, “Choice and investigation of 03Kh24N6M3-type austenitic—ferritic stainless steel for the production of small-scale reinforcement. Experience of application of low-waste technological processes in storage machine-building production of the equipment,” in: Krylov VNTO. Metallurgical Section [in Russian], Nizhnii Novgorog (1990), 23–25.Google Scholar
  10. 10.
    M. I. Abbasov, “Influence of the technological factors on the structure and properties of cast products of corrosion-resistant steels. Improvement of the technology and quality of manufacturing of oil-production equipment,” Perm (1986), pp. 44–50.Google Scholar
  11. 11.
    K. Tubielewicz, P. Dudek, and R. Melechov, Zastosowanie stali ferrytychno—austenitycznych do produkcji wyrobów spawanych (artykul przeglądowy), in: Czystsza Produkcja w Polsce (2002).Google Scholar
  12. 12.
    NACE Standard TM 01177-90. Standard Test Method. Laboratory Testing of Metals for Resistance to Sulfide Stress Corrosion Cracking in H2S Environments, National Association of Corrosion Engineers, Houston, Texas (1990), p. 22.Google Scholar
  13. 13.
    R. K. Melekhov, A. M. Krutsan, O. N. Romaniv, et al., MR 185-86. Methodical Recommendations. Strength Analysis and Tests. Methods of Testing for the Susceptibility of Steels and Alloys to Stress-Corrosion Cracking in Liquid Media [in Russian], VNIINMASh, Moscow (1986).Google Scholar
  14. 14.
    I. I. Vasilenko and R. K. Melekhov, Corrosion Cracking of Steels [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  15. 15.
    I. I. Sokol, E. A. Ulyanin, E. G. Fel’dgangler, et al., Structure and Corrosion of Metals and Alloys. An Atlas (Reference Book) [in Russian], Metallurgiya, Moscow (1989).Google Scholar
  16. 16.
    S.-L. Chou and W.-T. Tsai, “Effect of grain size on the hydrogen-assisted cracking in duplex stainless steels,” Mat. Sci. Eng., A70, 219–224 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • R. K. Melekhov
    • 1
  • O. I. Radkevych
    • 1
  • H. V. Chumalo
    • 1
  • R. M. Yurkevych
    • 1
  1. 1.Karpenko Physicomechanical InstituteUkrainian Academy of SciencesLviv

Personalised recommendations