Materials Science

, Volume 41, Issue 3, pp 376–387 | Cite as

Thermoelastic State of a Ferritic Layer in a Quasistationary Electromagnetic Field

  • O. R. Hachkevych
  • R. O. Ivas'ko


The electromagnetic, temperature, and mechanical fields formed in an elastic ferritic layer under the action of an electromagnetic field induced by a quasistationary current flowing in a plane parallel to the base of the layer are determined and studied. We establish the regularities of the distributions of intensities of the fields, heat release, ponderomotive forces, temperature, and stresses (in particular, in the vicinity of resonance frequencies) in a layer of magnetically soft Ni-Zn material depending on its thickness and the parameters of external action. The accumulated results can be used for the creation and development of the modes of operation of ferritic elements in electric and electronic devices.


Structural Material Resonance Frequency Electromagnetic Field Heat Release Electronic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ya. S. Podstrigach, Ya. I. Burak, A. R. Gachkevich, and L. V. Chernyavskaya, Thermoelasticity of Conducting Bodies [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  2. 2.
    R. M. Biktyakov, D. V. Gaskarov, Yu. S. Zvorono, et al., Stability of the Properties of Ferrites. Analysis of the Physical Properties under External Actions, Prediction. Elements of Design [in Russian], Sovetskoe Radio, Moscow (1974).Google Scholar
  3. 3.
    A. R. Gachkevich, Thermomechanics of Conducting Bodies Under the Action of Quasistationary Electromagnetic Fields [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  4. 4.
    R. M. Bozorth, Ferromagnetism, Wiley-IEEE Press, New York (1993).Google Scholar
  5. 5.
    X. K. Zhang, Y. F. Li, J. Q. Xiao and E. D. Wetzel, “Theoretical and experimental analysis of magnetic inductive heating in ferrite materials,” J. Appl. Phys., 93, No.10, 7124–7126 (2003).Google Scholar
  6. 6.
    O. R. Hachkevych and R. O. Ivas'ko, “Thermomechanics of ferritic bodies in quasistationary electromagnetic fields,” Mat. Met. Fiz.-Mekh. Polya, 43, No.1, 161–172 (2000).Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshits, Electrodynamics of Continua [in Russian], Nauka, Moscow (1982).Google Scholar
  8. 8.
    A. D. Kovalenko, Fundamentals of Thermoelasticity [in Russian], Naukova Dumka, Kiev (1970).Google Scholar
  9. 9.
    I. N. Sidorov, A. A. Khristinin, and S. V. Skornyakov, Small-Scale Magnetic Circuits and Cores. A Handbook [in Russian], Radio i Svyaz', Moscow (1989).Google Scholar
  10. 10.
    A. R. von Hippel, Dielectrics and Waves [Russian translation], Izd. Inostr. Lit., Moscow (1960).Google Scholar
  11. 11.
    I. N. Bronshtein and K. A. Semendyaev, A Handbook of Mathematics for Engineers and Students of Higher Schools [in Russian], Nauka, Moscow (1981).Google Scholar
  12. 12.
    S. R. de Groot and L. G. Suttorp, Foundations of Electrodynamics [Russian translation], Nauka, Moscow (1982).Google Scholar
  13. 13.
    Ya. S. Podstrigach and Ya. A. Chernukha, “On the heat-conduction equations for thin-walled structural elements,” Mat. Met. Fiz.-Mekh. Polya, 2, 54–59 (1975).Google Scholar
  14. 14.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers [Russian translation], Nauka, Moscow (1977).Google Scholar
  15. 15.
    D. D. Mishin, Magnetic Materials [in Russian], Vysshaya Shkola, Moscow (1991).Google Scholar
  16. 16.
    A. M. Prokhorov (editor), Physical Encyclopaedia [in Russian], Sovetskaya Entsiklopediya, Moscow (1984).Google Scholar
  17. 17.
    Yu. N. Pchel'nikov and V. T. Sviridov, Ultrahigh-Frequency Electronics [in Russian], Radio i Svyaz', Moscow (1981).Google Scholar
  18. 18.
    Yu. Shichize and H. Sato, Ferrites [Russian translation], Mir, Moscow (1964).Google Scholar
  19. 19.
    V. A. Zlobin et al., Ferritic Materials (Physicomechanical Properties) [in Russian], Energiya, Leningrad (1970).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • O. R. Hachkevych
    • 1
  • R. O. Ivas'ko
    • 2
  1. 1.Politechnika OpolskaOpolePoland
  2. 2.Pidstryhach Institute for Applied Problems in Mechanics and MathematicsUkrainian Academy of SciencesLvivUkraine

Personalised recommendations