Advertisement

Materials Science

, Volume 41, Issue 3, pp 295–303 | Cite as

Adsorption Effect in Corrosion Fracture Mechanics

  • O. M. Romaniv
  • H. M. Nykyforchyn
Article
  • 35 Downloads

Abstract

We analyze the well-known works devoted to the adsorption lowering of crack growth resistance in metals and alloys as a component of the general Karpenko theory on the role of adsorption in physicochemical fracture mechanics. We consider the cases of static and cyclic loading, and short- and long-term crack resistance of steels in liquid and gaseous media. Special attention is given to the methodological aspects of experimental investigations and to the selection of model adsorption-surface-active media. We also evaluate the crucial experiment corroborating the adsorption effect of lowering of the long-term static crack resistance of high-strength steel in high-purity dimethylsulfoxide.

Keywords

Experimental Investigation Structural Material Fracture Mechanic Dimethylsulfoxide Cyclic Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. V. Karpenko, Physicochemical Mechanics of Structural Materials. Selected Works [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  2. 2.
    P. A. Rehbinder, “On the influence of changes in the surface energy on the cleavability, hardness, and other properties of crystals,” in: Proceedings of the VI Congr. of Russian Physicists [in Russian], GIZ, Moscow (1928), pp. 3–14.Google Scholar
  3. 3.
    V. I. Likhtman, V. D. Shchukin, and P. A. Rehbinder, Physicochemical Mechanics of Materials [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).Google Scholar
  4. 4.
    H. V. Karpenko, “Effect of surfactants on the fatigue strength of metals,” Dop. Akad. Nauk Ukr. RSR, No. 3, 39–44 (1941).Google Scholar
  5. 5.
    V. I. Diloshak, V. B. Dalisov, and V. I. Pokhmurskii, “On the influence of adsorption action of the environment on the development of slip bands in fatigue,” Fiz.-Khim. Mekh. Mater., 7, No.4, 104–105 (1971).Google Scholar
  6. 6.
    V. I. Diloshak, V. B. Dalisov, and V. I. Pokhmurskii, “Influence of a surface-active medium on the processes of hardening and loss of strength in fatigue,” Fiz.-Khim. Mekh. Mater., 7, No. 5, 79–80 (1971).Google Scholar
  7. 7.
    G. V. Karpenko, Influence of Active Liquid Media on the Endurance of Steel [in Russian], Izd. Akad. Nauk USSR, Kiev (1955).Google Scholar
  8. 8.
    K. B. Katsov, “On the adsorption lowering of the contact durability of ShKh15 steel,” Fiz.-Khim. Mekh. Mater., 4, No.4, 432–434 (1968).Google Scholar
  9. 9.
    I. I. Vasilenko, “Adsorption lowering of strength and stress corrosion,” Fiz.-Khim. Mekh. Mater., 14, No.4, 10–19 (1978).Google Scholar
  10. 10.
    V. I. Loboiko, V. G. Karpenko, and I. I. Vasilenko, “On the adsorption fatigue of structural steels in the presence of alcohols,” Fiz.-Khim. Mekh. Mater., 12, No.1, 21–25 (1976).Google Scholar
  11. 11.
    I. I. Vasilenko and V. I. Kapinos, “Role of the adsorption lowering of strength, dissolution, and hydrogen embrittlement in the course of fatigue fracture of steels in media,” in: Proc. I Soviet-English Sem. “Corrosion Fatigue of Metals” [in Russian], Naukova Dumka, Kiev (1982), pp. 147–174.Google Scholar
  12. 12.
    M. I. Chaevskii, “Some specific features of the fracture of a metal in the domain of stress concentration under the action of a corrosive medium,” Fiz.-Khim. Mekh. Mater., 5, No.5, 631–632 (1969).Google Scholar
  13. 13.
    V. T. Stepurenko, G. T. Proskuryakov, and M. G. Sakharov, “On the influence of water in mineral lubricating oils on the endurance of steel,” Zashch. Met., No. 2, 155–158 (1975).Google Scholar
  14. 14.
    H. Nichols and W. Rostoker, “Brittle fracture of steel in the presence of organic liquids,” in: Environment-Sensitive Mechanical Behavior [Russian translation], Mir, Moscow (1969), pp. 234–254.Google Scholar
  15. 15.
    B. I. Kultan, G. V. Karpenko, N. N. Tkachenko, and R. P. Svistun, “Adsorption and corrosion influence of liquid media on the cyclic strength of steel,” Dokl. Akad. Nauk SSSR, 228, No.1, 156–159 (1976).Google Scholar
  16. 16.
    V. V. Panasyuk and S. E. Kovchik, “Influence of a surface-active medium on the surface energy of a brittle body,” Dokl. Akad. Nauk SSSR, 146, No.1, 82–85 (1963).Google Scholar
  17. 17.
    I. I. Vasilenko, S. E. Kovchik, and S. I. Mikitishin, “Influence of the environment on the fracture energy of U8 carbon steel,” Fiz.-Khim. Mekh. Mater., 1, No.1, 16–21 (1965).Google Scholar
  18. 18.
    V. G. Karpenko, E. M. Gutman, and I. I. Vasilenko, “The Rehbinder effect in corrosive and weak surface-active media,” Fiz.-Khim. Mekh. Mater., 3, No.5, 523–532 (1967).Google Scholar
  19. 19.
    O. N. Romaniv and G. N. Nikiforchin, Corrosion Fracture Mechanics of Structural Alloys [in Russian], Metallurgiya, Moscow (1986).Google Scholar
  20. 20.
    O. N. Romaniv, G. N. Nikiforchin, and Yu. D. Petrina, “On the influence of water and moisture on the crack resistance of structural steels under short-term loading,” Fiz.-Khim. Mekh. Mater., 10, No.1, 16–20 (1974).Google Scholar
  21. 21.
    H. H. Johnson, “Environmental effect on the fracture of high-strength materials,” in: H. Liebowitz (editor), Fracture [Russian translation], Vol. 3: Engineering Fundamentals and Environmental Effects, Mir, Moscow (1976), pp. 729–775.Google Scholar
  22. 22.
    A. W. Loginov and E. H. Phelps, “Steels for seamless hydrogen pressure vessels,” Trans. ASME, B97, No.1, 274–282 (1975).Google Scholar
  23. 23.
    V. V. Panasyuk (editor), Fracture Mechanics and Strength of Materials: Handbook [in Russian], Vol. 1: V. V. Panasyuk, O. E. Andreikiv, and V. Z. Parton, Foundations of Fracture Mechanics, Naukova Dumka, Kiev (1988).Google Scholar
  24. 24.
    O. N. Romaniv, G. N. Nikiforchin, I. A. Berezyuk, and S. I. Ripetskii, “On the procedure of evaluation of the fracture toughness of low-plastic hardened steels,” Zavod. Lab., No. 8, 1004–1007 (1975).Google Scholar
  25. 25.
    O. N. Romaniv, Yu. V. Zima, G. N. Nikiforchin, and N. L. Kuklyak, “A fractographic investigation of crack propagation in hardened steels under the action of water,” Fiz.-Khim. Mekh. Mater., 11, No.2, 17–23 (1975).Google Scholar
  26. 26.
    O. N. Romaniv, G. N. Nikiforchin, and N. A. Deev, “Kinetic effects in the mechanics of retarded fracture of high-strength alloys,” Fiz.-Khim. Mekh. Mater., 12, No.4, 9–24 (1976).Google Scholar
  27. 27.
    V. V. Panasyuk, Mechanics of the Quasibrittle Fracture of Materials [in Russian], Naukova Dumka, Kiev (1991).Google Scholar
  28. 28.
    S. Ya. Yarema, “Investigations of fatigue crack growth and kinetic diagrams of fatigue fracture,” Fiz.-Khim. Mekh. Mater., 13, No.4, 3–22 (1977).Google Scholar
  29. 29.
    J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards, “Hydrogen transport by dislocations,” Met. Trans., 7A, No.6, 821–829 (1976).Google Scholar
  30. 30.
    P. McIntyre, “Interaction of hydrogen with steel in the course of cyclic loading,” in: Proc. I Soviet-English Sem. “Corrosion Fatigue of Metals” [in Russian], Naukova Dumka, Kiev (1982), pp. 121–147.Google Scholar
  31. 31.
    O. T. Tsirul'nik, T. R. Agladze, O. N. Romaniv, and G. N. Nikiforchin, “Kinetics of the corrosion cracking of high-strength steels in aqueous and dimethylsulfoxide media,” in: Abstr. Pap. 2nd All-Union Symp. “Electrochemistry and Metallic Corrosion in Aqueous-Organic and Organic Media” [in Russian], Rostov-on-Don (1984), pp. 75–76.Google Scholar
  32. 32.
    T. R. Agladze, Ya. M. Kolotyrkin, O. N. Romaniv, and G. N. Nykyforchyn, “The effect of adsorption-chemical interaction for metal-environment system in stress corrosion cracking,” in: Proc. 4th Japan-USSR Corrosion Sem., Jpn. Soc. Corros. Eng., Tokyo (1985), pp. 256–269.Google Scholar
  33. 33.
    T. R. Agladze, “Specific features of the corrosion processes in organic media,” in: VINITI Series in Corrosion and Rust Protection [in Russian], Vol. 9, VINITI, Moscow (1982), pp. 3–87.Google Scholar
  34. 34.
    V. V. Panasyuk (editor), Fracture Mechanics and Strength of Materials: Handbook [in Russian], Vol. 4: O. N. Romaniv, S. Ya. Yarema, G. N. Nikiforchin, et al., Fatigue and Cyclic Crack Resistance of Structural Materials, Naukova Dumka, Kiev (1990).Google Scholar
  35. 35.
    S. Ya. Yarema and I. B. Polutranko, “Fatigue crack growth in vacuum and gaseous media,” Fiz.-Khim. Mekh. Mater., 19, No.4, 37–47 (1983).Google Scholar
  36. 36.
    S. Ya. Yarema and O. D. Zinyuk, “Cyclic crack resistance of magnesium alloys in vacuum and damp and highly dried air,” Fiz.-Khim. Mekh. Mater., 22, No.4, 26–34 (1986).Google Scholar
  37. 37.
    O. N. Romaniv, G. N. Nikiforchin, and L. Yu. Kozak, “Cyclic crack resistance of structural steels in gaseous hydrogen,” Fiz.-Khim. Mekh. Mater., 22, No.5, 3–15 (1986).Google Scholar
  38. 38.
    G. N. Nikiforchin and L. Yu. Kozak, “On the methodological features of evaluating the cyclic crack resistance of structural steels in gaseous media,” Fiz.-Khim. Mekh. Mater., 22, No.2, 69–73 (1986).Google Scholar
  39. 39.
    H. M. Nykyforchyn, “Manifestation of hydrogen and low-temperature brittleness in the near-threshold cyclic crack resistance of materials,” Fiz.-Khim. Mekh. Mater., 38, No.4, 5–16 (2002).Google Scholar
  40. 40.
    O. N. Romaniv, G. N. Nikiforchin, and A. T. Tsirul'nik, “Role of the adsorption factor in the lowering of long-term static crack resistance of high-strength steel in gaseous media,” Fiz.-Khim. Mekh. Mater., 23, No.4, 17–22 (1987).Google Scholar
  41. 41.
    S. P. Lynch, “A commentary on mechanisms of environmentally assisted cracking,” in: Proc. 2nd Int. Conf. on Corrosion-Deformation Interaction, Nice (1997), pp. 206–219.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • O. M. Romaniv
    • 1
  • H. M. Nykyforchyn
    • 1
  1. 1.Karpenko Physicomechanical InstituteUkrainian Academy of SciencesLvivUkraine

Personalised recommendations