Materials Science

, Volume 41, Issue 1, pp 47–55 | Cite as

Electrodiffusion of Radionuclides in Lava-Like Fuel-Containing Materials

  • M. T. Solodyak
  • M. B. Tokarchuk


We pose and study the problem of transport of charged particles of radionuclides through the surface of contact of a layer of electrolyte with a lava-like fuel-containing material. It is shown that the electric charge and the strength of the electric field are concentrated in a narrow layer near the interface of layers and form the surface electric charge. The conditions under which the intensity of electrodiffusion of charged particles is minimum are analyzed.


Radionuclide Structural Material Charged Particle Electric Charge Narrow Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Krinitsyn, I. Ya. Simanovskaya, and O. L. Strikhar, “Action of water on the construction and fuel-containing materials in the facilities of the Chernobyl sarcophagus,” Radiochemistry, 40, No.3, 287–297 (1998).Google Scholar
  2. 2.
    V. N. Shcherbin, A. P. Krinitsyn, and O. L. Stikhar’, Detection of 235 U in the Water Flows of the “Ukrytie” Object [in Russian], Preprint No. 1–99, “Ukryttya” MNTTs, Ukrainian Academy of Sciences, Chornobyl (1999).Google Scholar
  3. 3.
    S. A. Bogatov, A. A. Korneev, A. P. Krinitsyn, et al., Problems of Water at the “Ukrytie” Object [in Russian], Preprint No. 5–99, “Ukryttya” MNTTs, Ukrainian Academy of Sciences, Chornobyl (1999).Google Scholar
  4. 4.
    A. P. Krinitsyn, I. Ya. Simanovskaya, and O. L. Strikhar’, “Some aspects of the macrocomponent and radionuclide compositions of water at the “Ukrytie” object,” Probl. Chernob., Issue 6, 21–24 (2000).Google Scholar
  5. 5.
    I. R. Yukhnovs’kyi, O. E. Kobrin, V. V. Tokarevs’kyi, et al., “Problems of the interaction of water with fuel-containing masses at the “Ukryttya” object of the Chernobyl nuclear power plant,” Zh. Fiz. Doslid., 1, No.2, 169–180 (1997).Google Scholar
  6. 6.
    M. V. Tokarchuk, P. P. Kostrobii, and I. A. Humenyuk, Generalized Transport Equations for Reaction Diffusion Processes. A Method of Nonequilibrium Statistical Operator [in Ukrainian], Preprint ICMP-01-12U, Institute of Physics of Condensed Systems, Ukrainian Academy of Sciences, Lviv (2001).Google Scholar
  7. 7.
    M. T. Solodyak, E. Ya. Chaplya, and I. R. Kachur, Source Equations of the Mathematical Model of Electrodiffusion of Aqueous Solutions of Salts in Porous Media [in Ukrainian], Preprint No. 6-93, TsMMIPPMM, Ukrainian Academy of Sciences, Lviv (1993).Google Scholar
  8. 8.
    W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism [Russian translation], Fizmatgiz, Moscow (1963).Google Scholar
  9. 9.
    Ya. I. Burak, B. P. Halapats, and B. M. Hnidets’, Physicomechanical Processes in Conducting Bodies [in Ukrainian], Naukova Dumka, Kiev (1978).Google Scholar
  10. 10.
    I. E. Tamm, Fundamentals of the Theory of Electricity [in Russian], Nauka, Moscow (1976).Google Scholar
  11. 11.
    J. D. Jackson, Classical Electrodynamics [Russian translation], Mir, Moscow (1965).Google Scholar
  12. 12.
    G. W. Kaye and T. H. Laby, Tables of Physical and Chemical Constants [Russian translation], Fizmatgiz, Moscow (1962).Google Scholar
  13. 13.
    K. Frye (editor), The Encyclopedia of Mineralogy [Russian translation], Nedra, Leningrad (1985).Google Scholar
  14. 14.
    I. K. Kikoin (editor), Tables of Physical and Chemical Constants [in Russian], Atomizdat, Moscow (1976).Google Scholar
  15. 15.
    V. Baryakhtar, V. Conchar, A. Zhidkov, and V. Zhydkov, “Radiation damage and self-sputtering of high-radioactive dielectrics: spontaneous emission of submicronic dust particles,” Condens. Matter Phys., 5, No.3 (31), 449–471 (2002).Google Scholar
  16. 16.
    A. A. Belyustin, Leaching, Composition, and Structure of the Surface Layers of Alkali-Silicate Glasses Treated with Aqueous Solutions and the Diffusion of Cations in These Glasses. Glass-Like State [in Russian], Nauka, Leningrad (1983).Google Scholar
  17. 17.
    Ya. S. Podstrigach, Ya. I. Burak, and V. F. Kondrat, Magnetothermoelasticity of Conducting Bodies [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  18. 18.
    S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics [Russian translation], Mir, Moscow (1964).Google Scholar
  19. 19.
    I. Gyarmati, Non-Equilibrium Thermodynamics: Field Theory and Variational Principles [Russian translation], Mir, Moscow (1974).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. T. Solodyak
    • 1
  • M. B. Tokarchuk
    • 2
  1. 1.Pidstryhach Institute for Applied Problems in Mechanics and MathematicsUkrainian National Academy of SciencesLvivUkraine
  2. 2.Institute of Physics of Condensed SystemsUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations