Advertisement

Materials Science

, Volume 40, Issue 6, pp 822–830 | Cite as

Strength Deterioration of 26H2MF and 34HNM Steels Used in Ship Engines: Hydrogen Factor

  • A. Zielinski
  • E. Lunarska
  • P. Michalak
  • W. Serbinski
Article

Abstract

The susceptibility of 26H2MF and 34HNM structural steels (heat treated to obtain different microstructures) to hydrogen degradation is determined by slow-strain-rate tensile testing at 10−6 sec−1. The parameters such as ultimate strength, elongation to fracture, fracture energy, and reduction in area are evaluated. The substantial degradation of mechanical properties accompanied by brittle fracture is observed in 0.01 M H2SO4 + As2 O3 at a cathodic current density of 20mA/cm2. The degree of degradation of steel is correlated with the modification of microstructure as a result of heat treatment. The observed effects can be attributed to different tendencies of the obtained microstructures to hydrogen trapping.

Keywords

Hydrogen Microstructure Mechanical Property Heat Treatment Brittle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Smialowski, Hydrogen in Steels, Pergamon Press, Oxford (1962).Google Scholar
  2. 2.
    M. Smialowski, “Initiation of hydrogen-induced cracking in iron and iron alloys,” in: Hydrogen Degradation of Ferrous Alloys, Noyes Publ., Park Ridge (1985), pp. 561–578.Google Scholar
  3. 3.
    P. Timmins, Solutions to Hydrogen Attack in Steels, ASM, Materials Park (1997).Google Scholar
  4. 4.
    K. Piotrowski and K. Witkowski, Okretowe Silniki Spalinowe, Trademar, Gdynia (1996).Google Scholar
  5. 5.
    Klasyfikacja Paliw. Klasyfikacja Paliw Zeglugowych, N-89/C-96800.02.Google Scholar
  6. 6.
    Paliwa Zeglugowe, PN-93/C-96049.Google Scholar
  7. 7.
    P. Michalak, “Zmeczeniowe niszczenie instalacji paliwowych silnikow okretowych stymulowane wodorem,” in: Prace Konferencji Mechanika 99, Gdansk (1999), pp. 43–44.Google Scholar
  8. 8.
    P. Kula, R. Pietrasik, B. Wendler, and K. Jakubowski, “The effect of hydrogen in lubricated frictional couples,” Wear, 212, 199–205 (1997).CrossRefGoogle Scholar
  9. 9.
    P. Michalak and K. Kotkowski, “Hydrogen-enhanced fatigue of fuel installations in diesel engines,” in: Proc. of the Internat. Conf. on the Environmental Degradation of Engineering Materials, Vol. 1, Gdansk-Jurata (1999), pp. 346–350.Google Scholar
  10. 10.
    P. Michalak and A. Zielinski, “Ocena niebezpieczenstwa kruchosci wodorowej stali stopowych stosowanych na instalacje paliwowe silnikow okretowych,” in: Prace 1 Pomorskiej Konferencji Naukowej Inzynieria Materialowa 2000, Gdansk-Sobieszewo (2000), pp. 161–166.Google Scholar
  11. 11.
    V. M. A. Devanathan and Z. Stachurski, “The mechanism of hydrogen evolution on iron in acid solution by determination of permeation rates,” J. Electrochem. Soc., 111, 619–627 (1964).Google Scholar
  12. 12.
    Wodorowe i Korozyjne Niszczenie Metali, PWN, Warszawa (1979).Google Scholar
  13. 13.
    P. McIntyre, “Hydrogen effects in high strength steels,” in: Hydrogen Degradation of Ferrous Alloys, Noyes Publ., Park Ridge (1985), pp. 763–798.Google Scholar
  14. 14.
    E. Lunarska,“Effect of hydrogen on the plastic properties of iron single crystals, whiskers, and polycrystals,” in: Hydrogen Degradation of Ferrous Alloys, Noyes Publ., Park Ridge (1985), pp. 321–352.Google Scholar
  15. 15.
    E. Lunarska,“Hydrogen-induced degradation of low-carbon steel,” in: Hydrogen Degradation of Ferrous Alloy, Noyes Publ., Park Ridge (1985), pp. 712–736.Google Scholar
  16. 16.
    G.-H. Yu, Y.-H. Cheng, L. Chen, L.-J. Qiao, Y.-B. Wang, and W.-Y. Chu, “Hydrogen accumulation and hydrogen-induced cracking of API tubular steel,” Corrosion, 45, 762–765 (1997).Google Scholar
  17. 17.
    A. Zielinski and P. Domzalicki, “Hydrogen degradation of high strength low alloyed steels,” in: Proc. of the 7th Internat. Sci. Conf. on the Achievements in Mechanical Materials Engineering, Silesian Univ. Techn., Zakopane (1998), pp. 609–612.Google Scholar
  18. 18.
    A. Zielinski and P. Domzalicki, “Ocena podatnosci na degradacje srodowiskowa wybranych materialow okretowych,” in: Prace Konferencji Nowe Materialy, Nowe Technologie Materialowe w Przemysle Okretowym i Maszynowym, Szczecin (1998), pp. 253–258.Google Scholar
  19. 19.
    T. C. Zhang, X. X. Jiang, and S. Z. Li, “Hydrogen-induced embrittlement wear of a high-strength low-alloy steel in an acidic environment,” Corrosion, 45, 200–206 (1997).Google Scholar
  20. 20.
    A. Zielinski, P. Domzalicki, J. Birn, and C. Poniewierska, “Hydrogen degradation of ship steels,” Marine Techn. Trans., 9, 219–230 (1998).Google Scholar
  21. 21.
    Fragilisation par l’Hydrogene et Corrosion Sous Contrainte. Phenomenologie et Mecanismes, Edit. Phys., Bombannes (1990), pp. 397–424.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. Zielinski
    • 1
  • E. Lunarska
    • 2
  • P. Michalak
    • 1
  • W. Serbinski
    • 1
  1. 1.Materials Science and Engineering DepartmentGdansk University of TechnologyGdanskPoland
  2. 2.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations