Skip to main content

Advertisement

Log in

Strength Deterioration of 26H2MF and 34HNM Steels Used in Ship Engines: Hydrogen Factor

  • Published:
Materials Science Aims and scope

Abstract

The susceptibility of 26H2MF and 34HNM structural steels (heat treated to obtain different microstructures) to hydrogen degradation is determined by slow-strain-rate tensile testing at 10−6 sec−1. The parameters such as ultimate strength, elongation to fracture, fracture energy, and reduction in area are evaluated. The substantial degradation of mechanical properties accompanied by brittle fracture is observed in 0.01 M H2SO4 + As2 O3 at a cathodic current density of 20mA/cm2. The degree of degradation of steel is correlated with the modification of microstructure as a result of heat treatment. The observed effects can be attributed to different tendencies of the obtained microstructures to hydrogen trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Smialowski, Hydrogen in Steels, Pergamon Press, Oxford (1962).

    Google Scholar 

  2. M. Smialowski, “Initiation of hydrogen-induced cracking in iron and iron alloys,” in: Hydrogen Degradation of Ferrous Alloys, Noyes Publ., Park Ridge (1985), pp. 561–578.

    Google Scholar 

  3. P. Timmins, Solutions to Hydrogen Attack in Steels, ASM, Materials Park (1997).

  4. K. Piotrowski and K. Witkowski, Okretowe Silniki Spalinowe, Trademar, Gdynia (1996).

    Google Scholar 

  5. Klasyfikacja Paliw. Klasyfikacja Paliw Zeglugowych, N-89/C-96800.02.

  6. Paliwa Zeglugowe, PN-93/C-96049.

  7. P. Michalak, “Zmeczeniowe niszczenie instalacji paliwowych silnikow okretowych stymulowane wodorem,” in: Prace Konferencji Mechanika 99, Gdansk (1999), pp. 43–44.

  8. P. Kula, R. Pietrasik, B. Wendler, and K. Jakubowski, “The effect of hydrogen in lubricated frictional couples,” Wear, 212, 199–205 (1997).

    Article  Google Scholar 

  9. P. Michalak and K. Kotkowski, “Hydrogen-enhanced fatigue of fuel installations in diesel engines,” in: Proc. of the Internat. Conf. on the Environmental Degradation of Engineering Materials, Vol. 1, Gdansk-Jurata (1999), pp. 346–350.

    Google Scholar 

  10. P. Michalak and A. Zielinski, “Ocena niebezpieczenstwa kruchosci wodorowej stali stopowych stosowanych na instalacje paliwowe silnikow okretowych,” in: Prace 1 Pomorskiej Konferencji Naukowej Inzynieria Materialowa 2000, Gdansk-Sobieszewo (2000), pp. 161–166.

  11. V. M. A. Devanathan and Z. Stachurski, “The mechanism of hydrogen evolution on iron in acid solution by determination of permeation rates,” J. Electrochem. Soc., 111, 619–627 (1964).

    Google Scholar 

  12. Wodorowe i Korozyjne Niszczenie Metali, PWN, Warszawa (1979).

  13. P. McIntyre, “Hydrogen effects in high strength steels,” in: Hydrogen Degradation of Ferrous Alloys, Noyes Publ., Park Ridge (1985), pp. 763–798.

    Google Scholar 

  14. E. Lunarska,“Effect of hydrogen on the plastic properties of iron single crystals, whiskers, and polycrystals,” in: Hydrogen Degradation of Ferrous Alloys, Noyes Publ., Park Ridge (1985), pp. 321–352.

  15. E. Lunarska,“Hydrogen-induced degradation of low-carbon steel,” in: Hydrogen Degradation of Ferrous Alloy, Noyes Publ., Park Ridge (1985), pp. 712–736.

  16. G.-H. Yu, Y.-H. Cheng, L. Chen, L.-J. Qiao, Y.-B. Wang, and W.-Y. Chu, “Hydrogen accumulation and hydrogen-induced cracking of API tubular steel,” Corrosion, 45, 762–765 (1997).

    Google Scholar 

  17. A. Zielinski and P. Domzalicki, “Hydrogen degradation of high strength low alloyed steels,” in: Proc. of the 7th Internat. Sci. Conf. on the Achievements in Mechanical Materials Engineering, Silesian Univ. Techn., Zakopane (1998), pp. 609–612.

    Google Scholar 

  18. A. Zielinski and P. Domzalicki, “Ocena podatnosci na degradacje srodowiskowa wybranych materialow okretowych,” in: Prace Konferencji Nowe Materialy, Nowe Technologie Materialowe w Przemysle Okretowym i Maszynowym, Szczecin (1998), pp. 253–258.

  19. T. C. Zhang, X. X. Jiang, and S. Z. Li, “Hydrogen-induced embrittlement wear of a high-strength low-alloy steel in an acidic environment,” Corrosion, 45, 200–206 (1997).

    Google Scholar 

  20. A. Zielinski, P. Domzalicki, J. Birn, and C. Poniewierska, “Hydrogen degradation of ship steels,” Marine Techn. Trans., 9, 219–230 (1998).

    Google Scholar 

  21. Fragilisation par l’Hydrogene et Corrosion Sous Contrainte. Phenomenologie et Mecanismes, Edit. Phys., Bombannes (1990), pp. 397–424.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 40, No. 6, pp. 95–100, November–December, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zielinski, A., Lunarska, E., Michalak, P. et al. Strength Deterioration of 26H2MF and 34HNM Steels Used in Ship Engines: Hydrogen Factor. Mater Sci 40, 822–830 (2004). https://doi.org/10.1007/s11003-005-0120-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-005-0120-z

Keywords

Navigation