Skip to main content
Log in

Effect of Hydrogen on the Properties of Rapidly Quenched Tini-Ticu Alloys with Shape Memory

  • Published:
Materials Science Aims and scope

Abstract

We show that, after the introduction of hydrogen into rapidly quenched Ti50Ni25Cu25 alloys in the crystalline, amorphous, or amorphous-crystalline state, their shear modulus and electric resistance change appreciably. Subsequent thermocycling of these alloys is evidence of the suppression of direct and inverse martensitic transformations B2 ↔ B19 (B19′) due to hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. I. A. Stepanov, Yu. M. Flomenblit, and V. A. Zaimovskii, “Effect of hydrogen on the temperature of thermoelastic martensitic transformation in titanium nickelide,” Fiz. Met. Metalloved., 55, No.3, 612–614 (1983).

    Google Scholar 

  2. M. Kh. Shorshorov, I. A. Stepanov, Yu. M. Flomenblit, and V. V. Travkin, “Phase and structural hydrogen-induced transformations in alloys based on titanium nickelide,” Fiz. Met. Metalloved., 60, No.2, 326–333 (1985).

    Google Scholar 

  3. M. Kh. Shorshorov, Yu. M. Flomenblit, S. B. Maslenkov, and N. B. Budigina, “On the causes of the inducing action of hydrogen on thermoelastic martensitic transformations in alloys based on titanium nickelide,” Fiz. Met. Metalloved., 64, No.3, 498–503 (1987).

    Google Scholar 

  4. S. B. Maslenkov, N. B. Budigina, M. Kh. Shorshorov, and Yu. M. Flomenblit, “Effect of hydrogen on the character and succession of thermoelastic martensitic transformations in alloys based on titanium nickelide,” Metalloved. Termoobrab., No. 10, 6–10 (1988).

  5. S. B. Maslenkov, N. B. Budigina, M. Kh. Shorshorov, and Yu. M. Flomenblit, “Effects of shape memory and phase and structural hydrogen-induced transformations in alloys of the Ti-Ni system,” Fiz. Met. Metalloved., 66, No.2, 307–312 (1988).

    Google Scholar 

  6. L. V. Spivak, N. E. Skryabina, and V. N. Khachin, “Deformation effects and hydrogen brittleness of alloys based on titanium nickelide,” Fiz. Met. Metalloved., 79, No.4, 138–147 (1995).

    Google Scholar 

  7. K. Iwasaki and R. R. Hasiguti, “Effect of preannealings on the temperature spectra of internal friction and shear modulus of Ti-51 Ni,” Trans. Jpn. Inst. Metals, 28, No.5, 363–367 (1987).

    Google Scholar 

  8. S. K. Wu and C. M. Wayman, “Interstitial hydrogen induced extra reflections in Ti50Ni45Au5 martensite,” Scripta Met., 21, No.1, 75–77 (1987).

    Article  Google Scholar 

  9. S. K. Wu and C. M. Wayman, “Interstitial ordering of hydrogen and oxygen in TiNi alloys,” Acta Met., 36, No.4, 1005–1013 (1988).

    Article  Google Scholar 

  10. O. Mercier and K. N. Melton, “The substitution of Cu for Ni in TiNi shape memory alloys,” Met. Trans., A10, No.3, 387–393 (1979).

    Google Scholar 

  11. K. H. Brickhell, K. N. Melton, and O. Mercier, “The structure of NiTiCu shape memory alloys,” Met. Trans., A10, No.6, 693–699 (1979).

    Google Scholar 

  12. V. N. Tokarev, A. S. Savinov, and V. N Khachin, “Effect of shape memory in martensitic transformations in TiNi-NiCu alloys,” Fiz. Met. Metalloved., 56, No.2, 340–344 (1983).

    Google Scholar 

  13. N. N. Zakharov, S. L. Kuz’min, and V. A. Likhachev, “Great plastic strains in TiNiCu composition, ” Metallofizika, 3, No.5, 53–63 (1981).

    Google Scholar 

  14. N. M. Matveeva, Yu. K. Kovneristyi, Yu. A. Bykovskii, et al., “A study of the temperature ranges and the character of martensitic transformation in TiNi-TiCu alloys obtained by ultraspeed cooling of the melt,” Metally, No. 4, 171–175 (1989).

  15. N. E. Skryabina, L. V. Spivak, V. P. Vylezhnev, and M. A. Khominskii, “Effect of hydrogen on the properties of amorphous Fe78Nb3.5Cu1 B4 Si13.5 alloy,” Pis’ma Zh. Tekh. Fiz., 22, No.23, 36–39 (1996).

    Google Scholar 

  16. N. E. Skryabina, L. V. Spivak, M. A. Khominskii, et al., “Effect of hydrogen on the properties of amorphous iron-and cobalt-base alloys,” Fiz. Met. Metalloved., 83, No.3, 139–144 (1997).

    Google Scholar 

  17. N. Ye. Skryabina and L. V. Spivak, “Effect of hydrogen on the properties of amorphous alloys type Finemet (PEN-X effect),” Hydrogen Energy, 24, No.9, 795–799 (1999).

    Article  Google Scholar 

  18. A. V. Shelyakov, N. M. Matveeva, and S. G. Larin, “Rapidly quenched TiNi-based shape memory alloys, ” in: F. Trochu and V. Brailovski (editors), Shape Memory Alloys: Fundamentals, Modeling and Industrial Applications, Canadian Institute of Mining, Metallurgy and Petroleum (1999), pp. 295–303.

  19. H. Rosner, P. Schlossmacher, A. V. Shelyakov, and A. M. Glezer, “The influence of coherent TiCu plate-like precipitates on the thermoelastic martensitic transformation in melt-spun Ti50Ni25Cu25 shape memory alloys,” Acta Mater., 49, 1541–1548 (2001).

    Article  Google Scholar 

  20. P. L. Potapov, A. V. Shelyakov, and D. Schryvers, “On the crystal structure of TiNi-Cu martensite, ” Scripta Mater., 44, No.1, 1–7 (2001).

    Article  Google Scholar 

  21. B. A. Kolachev, Hydrogen Brittleness of Metals [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  22. T. Y. Zhang, W. Y. Chu, and C. M. Hsiao, “Mechanism of hydrogen induced softening,” Scripta Met., 20, No.2, 225–230 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 40, No. 6, pp. 28–34, November–December, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skryabina, N.E., Spivak, L.V., Fruchart, D. et al. Effect of Hydrogen on the Properties of Rapidly Quenched Tini-Ticu Alloys with Shape Memory. Mater Sci 40, 741–748 (2004). https://doi.org/10.1007/s11003-005-0110-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-005-0110-1

Keywords

Navigation