Materials Science

, Volume 40, Issue 3, pp 352–364 | Cite as

Nonstationary contact problem of thermoelasticity for bodies heated to different temperatures

  • Z. Olesiak
  • R. Kul’chyts’kyi-Zhyhailo


The solution of a nonstationary contact problem of thermoelasticity for bodies heated to different temperatures is obtained by using the Laplace-Hankel integral transformation. The expression for contact pressure is deduced in the form of an explicit dependence on two unknown functions: the distribution of heat flow and the radius of the contact zone. An algorithm of simplified solution of the contact problem is proposed.


Structural Material Heat Flow Unknown Function Contact Pressure Contact Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    George, D. L., Sneddon, I. N. 1962The axisymmetric Boussinesq problem for a heated punchJ. Math. Phys.11665689Google Scholar
  2. 2.
    N. M. Borodachov, “On the solution of a contact problem of thermoelasticity in the case of axial symmetry,” Mekh. Mashinostr., No. 5, 86–90 (1962).Google Scholar
  3. 3.
    I. N. Sneddon, The Use of Transform Methods in Elasticity, Tech. Rep., North Carolina State College (1964), pp. 150–156.Google Scholar
  4. 4.
    N. M. Borodachov, “Thermoelastic Hertz problem in the case of axial symmetry,” Mekh. Mashinostr., No. 5, 83–87 (1964).Google Scholar
  5. 5.
    Barber, J. R. 1978Contact problems involving a cooled punchJ. Elast.8409423Google Scholar
  6. 6.
    Barber, J. R., Comninou, M. 1989Thermoelastic contact problemsHetnarski, R. B. eds. Thermal StressesElsevierAmsterdam1105Google Scholar
  7. 7.
    Dundurs, J., Panek, C. 1976Heat conduction between bodies with wavy surfacesInt. J. Heat Mass Transfer19731736Google Scholar
  8. 8.
    Z. S. Olesiak, “O zagadnieniach, w których napręźenia w istotny sposób zaleźą od kierunku strumienia ciepla,” in: Zagadnienia Maszyn Przeplywowych, Gdansk (1993), pp. 545–557.Google Scholar
  9. 9.
    Kulchytsky-Zhyhailo, R., Olesiak, Z. 2000When can we avoid the paradoxes in the solution to the problems of two thermoelastic cylinders in contactJ. Theor. Appl. Mech.38297314Google Scholar
  10. 10.
    Kulchytsky-Zhyhailo, R., Olesiak, Z., Yevtushenko, O. 2001On thermal contact of two axially symmetric elastic solidsJ. Elast.63117Google Scholar
  11. 11.
    Comninou, M., Dundurs, J. 1979On the Barber boundary conditions for thermoelastic contactTrans. ASME, J. Appl. Mech.46849853Google Scholar
  12. 12.
    Comninou, M., Barber, J. R. 1984The thermoelastic Hertz problem with pressure dependent contact resistanceInt. J. Mech. Sci.26549554Google Scholar
  13. 13.
    Olesiak, Z. S., Yevtushenko, A. A., Kulchytsky-Zhyhailo, R. D. 1995On the contact of two heated bodiesFiz.-Khim. Mekh. Mater.313239Google Scholar
  14. 14.
    Ya. S. Pidstryhach, “Conditions of thermal contact of solid bodies,” Dokl. Akad. Nauk Ukr. RSR, No. 7, 872–874 (1963).Google Scholar
  15. 15.
    Pidstryhach, Ya. S. 1963Temperature field in a system of solid bodies conjugated via a thin intermediate layerInzh.-Fiz. Zh.1129136Google Scholar
  16. 16.
    Kul’chyts’kyi-Zhyhailo, R. D. 2000Distribution of stresses in axisymmetric contact problems with regard for heat releaseTren. Iznos21238245Google Scholar
  17. 17.
    Nowacki, W. 1986ThermoelasticityPergamon Press-PWNWarszawaGoogle Scholar
  18. 18.
    Yevtushenko, A. A., Kulchytsky-Zhyhailo, R. D. 1995Determination of limiting radii of the contact area in axisymmetric contact problems with frictional heat generationJ. Mech. Phys. Solid.43599604Google Scholar
  19. 19.
    Yevtushenko, A. A., Kulchytsky-Zhyhailo, R. D. 1997Simplified solution for elliptic contact problem with wearInt. J. Eng. Sci.3513271334Google Scholar
  20. 20.
    Kulchytsky-Zhyhailo, R. 2001A simplified solution for three-dimensional contact problem with heat generationInt. J. Eng. Sci.39303315Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Z. Olesiak
    • 1
    • 2
  • R. Kul’chyts’kyi-Zhyhailo
    • 1
    • 2
  1. 1.Warszawa UniversityWarszawa
  2. 2.Bialystok Technical UniversityBialystokPoland

Personalised recommendations